4 research outputs found
Synthesis of Cycloheptatriene-Containing Azetidine Lactones
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Organic Chemistry, copyright © 2022 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.joc.2c00367.We prepared a collection of complex cycloheptatriene-containing azetidine lactones by applying two key photochemical reactions: “aza-Yang” cyclization and Buchner carbene insertion into aromatic rings. While photolysis of phenacyl amines leads to a rapid charge transfer and elimination, we found that a simple protonation of the amine enables the formation of azetidinols as single diastereomers. We provide evidence, through ultrafast spectroscopy, for the electron transfer from free amines in the excited state. Further, we characterize the aza-Yang reaction by establishing the dependence of the initial reaction rates on the rates of photon absorption. An unanticipated change in reactivity in morpholine analogues is explained through interactions with the tosylate anion. The Buchner reaction proceeds with a slight preference for one diastereomer over the other, and successful reaction requires electron-donating carbene-stabilizing substituents. Overall, 16 compounds were prepared over seven steps. Guided by an increase in structural complexity, efforts such as this one extend the reach of chemists into unexplored chemical space and provide useful quantities of new compounds for studies focused on their properties
Decarboxylative C N coupling of 2,2-difluorobicyclo[1.1.1]pentane (BCP-F2) building blocks
Described herein is our effort towards achieving the decarboxylative functionalization of 2,2-difluorobicyclo[1.1.1]pentane (BCP-F2) building blocks. When compared with the non-fluorinated bicyclo[1.1.1]pentane (BCP) analogues, we discovered divergent reactivities. This is the first successful decarboxylative coupling of BCP-F2 building blocks reported via photoredox mechanism
Aza-Yang Cyclization—Buchner Aromatic Ring Expansion: Collective Synthesis of Cycloheptatriene-containing Azetidine Lactones
We prepared a collection of complex cycloheptatriene-containing azetidine lactones by ap- plying two key photochemical reactions: “aza-Yang” cyclization and Buchner carbene insertion into aromatic rings. While photolysis of phenacyl amines leads to a rapid charge transfer and elimination, we found that a simple protonation of the amine enables the formation of azetidinols as single diastereomers. We provide evidence, through ultrafast spectroscopy, for the electron transfer from free amines in the excited state. Further, we characterize aza-Yang re- action by establishing the dependence of initial reaction rates on rates of photon absorption. Unanticipated change in reactivity in morpholine analogs is explained through interactions with the tosylate anion. Buchner reaction proceeds with slight preference for one diastereomer over the other, and successful reaction requires electron-donating carbene-stabilizing substituents. Overall, sixteen compounds were prepared over seven steps. Guided by an increase in structural complexity, efforts such as this one extend reach of chemists into unexplored chemical space and provide useful quantities of new compounds for studies focused on their properties