34 research outputs found

    Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b

    Get PDF
    Four strains of purple sulfur bacteria containing bacteriochlorophyll b were isolated from cyanobacterial mats of soda lakes in the steppe of south-east Siberia, Russia. Cells of all strains were cocci without gas vesicles. Eventually, cells with flagella were seen in the electron microscope, but motile cells were observed very rarely in cultures. Internal photosynthetic membranes were of the tubular type. Photosynthetic pigments were bacteriochlorophyll b and carotenoids with spectral characteristics similar to 3,4,3',4'-tetrahydrospirilloxanthin. The bacteria were obligately phototrophic and strictly anaerobic. Hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. Thiosulfate was not used. During growth on sulfide, sulfur globules were formed as intermediate oxidation products, deposited inside the cells and centrally located. In the presence of sulfide and sodium bicarbonate, acetate, malate, propionate, pyruvate, succinate, fumarate and yeast extract were photoassimilated. Growth factors were not required. The new bacterium is an obligate alkaliphile growing at pH 8-10 with an optimum at pH 9. It showed good growth up to 6.0% sodium chloride and up to 8.5% sodium carbonates. Phenotypically, it is similar to Thiococcus pfennigii, but different by virtue of its alkaliphily and salt tolerance. The DNA G+C content was 63.6-64.8 mol %, compared to 69.4-69.9 mol % for Thiococcus pfennigii. The 16S rDNA sequence of strain A26T was approximately 92% similar to that of Thiococcus pfennigii DSM 226 and therefore a new genus and species name, Thioalkalicoccus limnaeus gen. nov. and sp. nov., are proposed for the new bacteriu

    Thiorhodospira sibirica gen. nov., and sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake

    Get PDF
    A new purple sulfur bacterium was isolated from microbial films on decaying plant mass in the near-shore area of the soda lake Malyi Kasytui (pH 9.5, 0.2% salinity) located in the steppe of the Chita region of south-east Siberia. Single cells were vibrioid- or spiral-shaped (3-4 microns wide and 7-20 microns long) and motile by means of a polar tuft of flagella. Internal photosynthetic membranes were of the lamellar type. Lamellae almost filled the whole cell, forming strands and coils. Photosynthetic pigments were bacteriochlorophyll a and carotenoids of the spirilloxanthin group. The new bacterium was strictly anaerobic. Under anoxic conditions, hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. During growth on sulfide, sulfur globules were formed as intermediate oxidation products. They were deposited outside the cytoplasm of the cells, in the peripheral periplasmic space and extracellularly. Thiosulfate was not used. Carbon dioxide, acetate, pyruvate, propionate, succinate, fumarate and malate were utilized as carbon sources. Optimum growth rates were obtained at pH 9.0 and optimum temperature was 30 degrees C. Good growth was observed in a mineral salts medium containing 5 g sodium bicarbonate l-1 without sodium chloride. The new bacterium tolerated up to 60 g sodium chloride l-1 and up to 80 g sodium carbonates l-1. Growth factors were not required. The DNA G + C composition was 56.0-57.4 mol%. Based on physiological, biochemical and genetic characteristics, the newly isolated bacterium is recognized as a new species of a new genus with the proposed name Thiorhodospira sibirica

    Ectothiorhodospira variabilis, sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes

    Get PDF
    During studies of moderately halophilic strains of Ectothiorhodospira from steppe soda lakes, we found a novel group of bacteria related to Ectothiorhodospira haloalkaliphila with salt optima at 50–80 g NaCl l”1. Phylogenetic analysis using 16S rRNA gene sequences of strains from soda lakes in Mongolia, Egypt and Siberia revealed separation of the group of new isolates from other Ectothiorhodospira species, including the closely related Ect. haloalkaliphila. DNA–DNA hybridization studies demonstrated that the new isolates form a homogeneous group at the species level, but at the same time are distinct from related species such as Ect. haloalkaliphila, Ect. vacuolata, Ect. shaposhnikovii and Ect. marina. The new isolates are considered to be strains of a novel species, for which the name Ectothiorhodospira variabilis sp. nov. is proposed, with the type strain WN22T (5VKM B-2479T 5DSM 21381T). Photosynthetic pigments of the novel species are bacteriochlorophyll a and carotenoids of the spirilloxanthin series with spirilloxanthin and derivatives thereof, together with small amounts of lycopene and rhodopin. Gas vesicles are formed by most of the strains, particularly in media containing yeast extract (0.5 g l”1) and acetate (0.5–2.0 g l”1). Sequence analysis of nifH (nitrogenase) and cbbL (RuBisCO) confirmed the assignment of the strains to the genus Ectothiorhodospira and in particular the close relationship to Ect. haloalkaliphila. The novel species Ect. variabilis is found in soda lakes separated by great geographical distances and is an alkaliphilic and halophilic bacterium that tolerates salt concentrations up to 150–200 g NaCl l”1

    HIV ASSOCIATED TUBERCULOSIS (Overview)

    No full text
    The literature review highlights the current epidemiological situation of HIV and tuberculosis co-infection in the world and in Uzbekistan. The literature data on the development of various forms of tuberculosis in HIV-infected patients, clinical manifestations of tuberculosis, peculiarities of the course, diagnosis and prevention are presented
    corecore