934 research outputs found

    Integration of psychological models in the design of artificial creatures

    Get PDF
    Artificial creatures form an increasingly important component of interactive computer games. Examples of such creatures exist which can interact with each other and the game player and learn from their experiences. However, we argue, the design of the underlying architecture and algorithms has to a large extent overlooked knowledge from psychology and cognitive sciences. We explore the integration of observations from studies of motivational systems and emotional behaviour into the design of artificial creatures. An initial implementation of our ideas using the “sim agent” toolkit illustrates that physiological models can be used as the basis for creatures with animal like behaviour attributes. The current aim of this research is to increase the “realism” of artificial creatures in interactive game-play, but it may have wider implications for the development of AI

    Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2.

    Get PDF
    The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4) are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic interactions for agonism. In this study, we examine how pentaacylated lipopolysaccharide from Rhodobacter sphaeroides (RSLPS) antagonises human TLR4/MD-2 and activates the horse receptor complex using a computational approach and cross-species mutagenesis. At a functional level, we show that RSLPS is a partial agonist at horse TLR4/MD-2 with greater efficacy than lipid IVa. These data suggest the importance of the additional acyl chain in RSLPS signalling. Based on docking analysis, we propose a model for positioning of the RSLPS lipid A moiety (RSLA) within the MD-2 cavity at the TLR4 dimer interface, which allows activity at the horse receptor complex. As for lipid IVa, RSLPS agonism requires species-specific contacts with MD-2 and TLR4, but the R2 chain of RSLA protrudes from the MD-2 pocket to contact the TLR4 dimer in the vicinity of proline 442. Our model explains why RSLPS is only partially dependent on horse TLR4 residue R385, unlike lipid IVa. Mutagenesis of proline 442 into a serine residue, as found in human TLR4, uncovers the importance of this site in RSLPS signalling; horse TLR4 R385G/P442S double mutation completely abolishes RSLPS activity without its counterpart, human TLR4 G384R/S441P, being able to restore it. Our data highlight the importance of subtle changes in ligand positioning, and suggest that TLR4 and MD-2 residues that may not participate directly in ligand binding can determine the signalling outcome of a given ligand. This indicates a cooperative binding mechanism within the receptor complex, which is becoming increasingly important in TLR signalling.This work was supported by a project grant from the Horserace Betting Levy Board to CEB and a Horserace Betting Levy Board Veterinary Research Training Scholarship to KLI. This work was also supported by a Wellcome Trust program grant to NJG and CEB. CEB is a BBSRC Research Development Fellow.This is the final version of the article. It first appeared from PLOS at http://dx.doi.org/10.1371/journal.pone.0098776

    High variability of Blue Carbon storage in seagrass meadows at the estuary scale

    Get PDF
    Seagrass meadows are considered important natural carbon sinks due to their capacity to store organic carbon (Corg) in sediments. However, the spatial heterogeneity of carbon storage in seagrass sediments needs to be better understood to improve accuracy of blue carbon assessments, particularly when strong gradients are present. We performed an intensive coring study within a sub-tropical estuary to assess the spatial variability in sedimentary Corg associated with seagrasses, and to identify the key factors promoting this variability. We found a strong spatial pattern within the estuary, from 52.16 mg Corg cm-3 in seagrass meadows in the upper parts, declining to 1.06 mg Corg cm-3 in seagrass meadows at the estuary mouth, despite a general gradient of increasing seagrass cover and seagrass habitat extent in the opposite direction. The sedimentary Corg underneath seagrass meadows came principally from allochthonous (non-seagrass) sources (~70-90%), while the contribution of seagrasses was low (~10-30%) throughout the entire estuary. Our results showed that Corg stored in sediments of seagrass meadows can be highly variable within an estuary, attributed largely to accumulation of fine sediments and inputs of allochthonous sources. Local features and the existence of spatial gradients must be considered in blue carbon estimates in coastal ecosystems

    A report card approach to describe temporal and spatial trends in parameters for coastal seagrass habitats

    Get PDF
    Report cards that are designed to monitor environmental trends have the potential to provide a powerful communication tool because they are easy to understand and accessible to the general public, scientists, managers and policy makers. Given this functionality, they are increasingly popular in marine ecosystem reporting. We describe a report card method for seagrass that incorporates spatial and temporal variability in three metrics—meadow area, species and biomass—developed using long-term (greater than 10 years) monitoring data. This framework summarises large amounts of spatially and temporally complex data to give a numeric score that provides reliable comparisons of seagrass condition in both persistent and naturally variable meadows. We provide an example of how this is applied to seagrass meadows in an industrial port in the Great Barrier Reef World Heritage Area of north-eastern Australia

    Nonsuicidal Self-Injury, Suicide Planning, and Suicide Attempt Among High-Risk Adolescents Prior to Psychiatric Hospitalization

    Get PDF
    The purpose of this study was to understand the trajectories of nonsuicidal self-injury (NSSI) and suicide plans (SP) in the 90 days prior to inpatient hospitalization, understand the role of NSSI and SP in predicting suicide attempts (SA) on a given day, and to test the interaction between NSSI and SP in predicting same-day SA. Participants included 69 adolescents (77% female, 65% white, 77% Non-Hispanic/Latinx, Mage = 15.77 SDage = 1.00) from an inpatient psychiatric unit. Past 90 day NSSI, SP, and SA were measured using the Columbia Suicide Severity Rating Scale and Timeline Follow Back. First, mixed effect models were conducted to assess trajectories of NSSI and SP leading up to inpatient hospitalization. The odds of NSSI remained relatively stable prior to hospitalization (OR = 1.01, 95% CI [1.00,1.02]). The odds of SP increased in the 90 days prior to hospitalization (OR = 1.04, 95% CI [1.02,1.05]) with each day associated with a 4% increase in the odds of making a SP. Second, random effect models were conducted to predict the odds of same-day SA from NSSI and SP. When adolescents endorsed either NSSI (OR = 2.99, p \u3c .001) or a SP (OR = 77.13, p \u3c .001) there was elevated odds of same-day SA. However, the presence of both NSSI and SP on a given day did not increase risk of SA on that same day. For this high-risk clinical sample of suicidal adolescents who drink alcohol, odds of SP increased in the days leading up to psychiatric hospitalization, but NSSI remained stable. On days when adolescents reported NSSI or SP, they had an increased odds of same-day SA. These results underscore the importance of frequent monitoring of NSSI and SP among high-risk adolescents who drink alcohol to prevent suicide attempts

    Targeting OGG1 and PARG radiosensitises head and neck cancer cells to high-LET protons through complex DNA damage persistence

    Get PDF
    Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation

    Production and regulation of interleukin-1 family cytokines at the materno-fetal interface

    Get PDF
    IL-1 family members regulate innate immune responses, are produced by gestation-associated tissues, and have a role in healthy and adverse pregnancy outcomes. To better understand their role at the materno-fetal interface we used a human tissue explant model to map lipopolysaccharide (LPS)-stimulated production of IL-1α, IL-1β, IL-18, IL-33, IL-1Ra, IL-18BPa, ST2 and IL-1RAcP by placenta, choriodecidua and amnion. Caspase-dependent processing of IL-1α, IL-1β, IL-18, and IL-33 and the ability of IL-1α, IL-1β, IL-18, and IL-33 to regulate the production of IL-1RA, IL-18BPa, ST2 and IL-1RAcP was also determined. LPS acted as a potent inducer of IL-1 family member expression especially in the placenta and choriodecidua with the response by the amnion restricted to IL-1β. Caspases-1, 4 and 8 contributed to LPS-stimulated production of IL-1 and IL-18, whereas calpain was required for IL-1 production. Exogenous administration of IL-1α, IL-1β, IL-18, and IL-33 lead to differential expression of IL-1Ra, IL-18BPa, ST2 and IL-1RAcP across all tissues examined. Most notable were the counter-regulatory effect of LPS on IL-1 and IL-1Ra in the amnion and the broad responsiveness of the amnion to IL-1 family cytokines for increased production of immunomodulatory peptides and soluble receptors. The placenta and membranes vary not only in their output of various IL-1 family members but also in their counter-regulatory mechanisms through endogenous inhibitory peptides, processing enzymes and soluble decoy receptors. This interactive network of inflammatory mediators likely contributes to innate defence mechanisms at the materno-fetal interface to limit, in particular, the detrimental effects of microbial invasion

    Identification of a Functional Non-coding Variant in the GABA

    Get PDF
    GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function

    Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens and Clostridium septicum

    Get PDF
    Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium
    corecore