1,490 research outputs found

    Shifting attention in viewer- and object-based reference frames after unilateral brain injury

    Get PDF
    The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection

    Unmasking selective path integration deficits inAlzheimer’s disease risk carriers

    Get PDF
    Alzheimer’s disease (AD) manifests with progressive memory loss and spatial disorientation. Neuropathological studies suggest early AD pathology in the entorhinal cortex (EC) of young adults at genetic risk for AD (APOE4-carriers). Because the EC harbors grid cells, a likely neural substrate of path integration (PI), we examined PI performance in APOE4-carriers during a virtual navigation task. We report a selective impairment in APOE4-carriers specifically when recruitment of compensatory navigational strategies via supportive spatial cues was disabled. A separate fMRI study revealed that PI performance was associated with the strength of entorhinal grid-like representations when no compensatory strategies were available, suggesting grid cell dysfunction as a mechanistic explanation for PI deficits in APOE4-carriers. Furthermore, posterior cingulate/retrosplenial cortex was involved in the recruitment of compensatory navigational strategies via supportive spatial cues. Our results provide evidence for selective PI deficits in AD risk carriers, decades before potential disease onset

    Pairing fluctuations and pseudogaps in the attractive Hubbard model

    Full text link
    The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime ω<T\omega < T of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.Comment: 20 pages, 12 figure

    Assessing the redshift evolution of massive black holes and their hosts

    Full text link
    Motivated by recent observational results that focus on high redshift black holes, we explore the effect of scatter and observational biases on the ability to recover the intrinsic properties of the black hole population at high redshift. We find that scatter and selection biases can hide the intrinsic correlations between black holes and their hosts, with 'observable' subsamples of the whole population suggesting, on average, positive evolution even when the underlying population is characterized by no- or negative evolution. We create theoretical mass functions of black holes convolving the mass function of dark matter halos with standard relationships linking black holes with their hosts. Under these assumptions, we find that the local MBH - sigma correlation is unable to fit the z = 6 black hole mass function proposed by Willott et al. (2010), overestimating the number density of all but the most massive black holes. Positive evolution or including scatter in the MBH - sigma correlation makes the discrepancy worse, as it further increases the number density of observable black holes. We notice that if the MBH - sigma correlation at z = 6 is steeper than today, then the mass function becomes shallower. This helps reproducing the mass function of z = 6 black holes proposed by Willott et al. (2010). Alternatively, it is possible that very few halos (of order 1/1000) host an active massive black hole at z = 6, or that most AGN are obscured, hindering their detection in optical surveys. Current measurements of the high redshift black hole mass function might be underestimating the density of low mass black holes if the active fraction or luminosity are a function of host or black hole mass. Finally, we discuss physical scenarios that can possibly lead to a steeper MBH - sigma relation at high redshift.Comment: MNRAS in pres

    Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease

    Get PDF
    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets
    • …
    corecore