1,116 research outputs found

    Hydrodynamical Simulations of Galaxy Clusters with Galcons

    Full text link
    We present our recently developed {\em galcon} approach to hydrodynamical cosmological simulations of galaxy clusters - a subgrid model added to the {\em Enzo} adaptive mesh refinement code - which is capable of tracking galaxies within the cluster potential and following the feedback of their main baryonic processes. Galcons are physically extended galactic constructs within which baryonic processes are modeled analytically. By identifying galaxy halos and initializing galcons at high redshift (z3z \sim 3, well before most clusters virialize), we are able to follow the evolution of star formation, galactic winds, and ram-pressure stripping of interstellar media, along with their associated mass, metals and energy feedback into intracluster (IC) gas, which are deposited through a well-resolved spherical interface layer. Our approach is fully described and all results from initial simulations with the enhanced {\em Enzo-Galcon} code are presented. With a galactic star formation rate derived from the observed cosmic star formation density, our galcon simulation better reproduces the observed properties of IC gas, including the density, temperature, metallicity, and entropy profiles. By following the impact of a large number of galaxies on IC gas we explicitly demonstrate the advantages of this approach in producing a lower stellar fraction, a larger gas core radius, an isothermal temperature profile in the central cluster region, and a flatter metallicity gradient than in a standard simulation

    S100B and APP Promote a Gliocentric Shift and Impaired Neurogenesis in Down Syndrome Neural Progenitors

    Get PDF
    Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production

    Mitochondrial Hydrogen Peroxide and Defective Cholesterol Efflux Prevent In Vitro Fertilization by Cryopreserved Inbred Mouse Sperm1

    Get PDF
    Recent advances in the cryopreservation of mouse sperm have resulted in dramatically improved in vitro fertilization (IVF) rates, but the biological mechanisms underlying the techniques remain unclear. Two different classes of compounds have been widely utilized to improve the IVF rates of cryopreserved mouse sperm: antioxidants and cyclodextrins. To determine how cryopreservation reduces mouse sperm IVF and how antioxidants and cyclodextrins mitigate this effect, we examined sperm function and oxidative damage after cryopreservation, with and without treatments, in mouse strains important for biomedical research. Our investigation revealed mouse strain-specific effects on IVF by modulation of oxidative stress and cholesterol efflux of cryopreserved sperm. Antioxidants improved IVF rates of C57Bl6/J cryopreserved mouse sperm by reducing hydrogen peroxide produced by sperm mitochondria and ameliorating peroxidative damage to the sperm acrosome. Enhancing cholesterol efflux with cyclodextrin restored capacitation-dependent sperm function and IVF after cryopreservation of C57Bl/6J, C57Bl/6N, and 129X1 mouse sperm. Our results highlight two accessible pathways for continued development of IVF techniques for mouse sperm and provide novel endpoints prognostic of IVF success. These insights may improve sperm cryopreservation methods of other mouse strains and species
    corecore