331 research outputs found

    Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue.

    Get PDF
    Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photoregulation of GABA(A) receptors (GABA(A)Rs) by a derivative of propofol (2,6-diisopropylphenol), a GABA(A)R allosteric modulator, which we have modified to contain photoisomerizable azobenzene. Using Ī±(1)Ī²(2)Ī³(2) GABA(A)Rs expressed in Xenopus laevis oocytes and native GABA(A)Rs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the Ī³-aminobutyric acid-elicited response and, at higher concentrations, directly activates the receptors. cis-MPC088, generated from trans-MPC088 by ultraviolet light (~365 nm), produces little, if any, receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with Ī³-aminobutyric acid affords bidirectional photomodulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photocontrol of GABA(A)Rs by an allosteric ligand, and open new avenues for fundamental and clinically oriented research on GABA(A)Rs, a major class of neurotransmitter receptors in the central nervous system

    An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly

    Get PDF
    ACKNOWLEDGEMENTS Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). We would also like to thank Prof. Shohei Mitani,at the National Bioresource Project for the Experimental Animal ā€˜Nematode C. elegansā€™, Japan, for FX3079. We are grateful to Prof. Tom Blumenthal (University of Colorado, Boulder) for suggestions and support of this work; and to Kathrine Wood for her contribution to the initial stages of part of this work. Author contributions. L.P., G.P., R.F., N.H., J.P. and B.M. performed experiments; B.M., J.P. and B.C. designed and lead the study; B.M. and J.P. drafted the manuscript. All authors reviewed the manuscript. FUNDING Biotechnology and Biological Sciences Research Council (BBSRC) [Project grant BB/J007137/1]; Medical Research Council (MRC) Confidence in Concept 2014 - University of Aberdeen Award(MC PC 14114v.2); University of Aberdeen Elphinstone Scholarship (to R.F.) and TET Fund support through Adekunle Ajasin University, Nigeria (to R.F.). Funding for open access charge: Biotechnology and Biological Sciences Research Council and Medical Research Council.Peer reviewedPublisher PD

    Preparation of azide biosynthetic surrogates of myo-Inositol

    Get PDF
    As a prelude to biomolecular incorporation studies, practical routes to a series of four regioisomeric azido-deoxy derivatives of inositol that mimic the natural myo-stereochemistry are described. Starting from commercially available myo-inositol, the regioselective and stereoselective introduction of azide functionality was achieved at the C-2, C-3, C-4 and C-5 positions via azide displacement of the corresponding O-sulfonates of suitably protected scyllo-, chiro-, epi- and neo-inositols, respectively. Notably, a final one-pot acetolysis method conveniently allowed for rapid access to pentaacetate azido-deoxy inositols. Investigations on the metabolic incorporation of these myo-inositol azide surrogates in both acetate and free alcohol forms are in progress
    • ā€¦
    corecore