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ABSTRACT

Spliced leader (SL) trans-splicing is a critical element
of gene expression in a number of eukaryotic groups.
This process is arguably best understood in nema-
todes, where biochemical and molecular studies in
Caenorhabditis elegans and Ascaris suumhave iden-
tified key steps and factors involved. Despite this,
the precise details of SL trans-splicing have yet to
be elucidated. In part, this is because the systematic
identification of the molecules involved has not pre-
viously been possible due to the lack of a specific
phenotype associated with defects in this process.
We present here a novel GFP-based reporter assay
that can monitor SL1 trans-splicing in living C. ele-
gans. Using this assay, we have identified mutants
in sna-1 that are defective in SL trans-splicing, and
demonstrate that reducing function of SNA-1, SNA-
2 and SUT-1, proteins that associate with SL1 RNA
and related SmY RNAs, impairs SL trans-splicing.
We further demonstrate that the Sm proteins and pl-
Cin, SMN and Gemin5, which are involved in small
nuclear ribonucleoprotein assembly, have an impor-
tant role in SL trans-splicing. Taken together these
results provide the first in vivo evidence for proteins
involved in SL trans-splicing, and indicate that con-
tinuous replacement of SL ribonucleoproteins con-
sumed during trans-splicing reactions is essential
for effective trans-splicing.

INTRODUCTION

A wide range of eukaryotes engage in the trans-splicing of
their pre-mRNAs, a process which results in the replace-
ment of the 5'-end of the transcript with a short, ‘spliced
leader’ (SL) (1,2). The essential mechanism of SL trans-
splicing involves an intermolecular splicing event between
the donor molecule, the SL RNA and the acceptor pre-
mRNA, which possesses an intron-like 5 untranslated re-
gion (5 UTR), containing an unpaired 3’ splice site, termed
the ‘outron’. However, most organisms that possess SL
trans-splicing also contain a sub-set of genes organized
into operons, consisting of several genes under the control
of a shared promoter. Operons thus produce polycistronic
transcripts, which are resolved into monocistronic mRNAs
through SL trans-splicing coupled to 3’ end formation.

SL trans-splicing occurs on approximately 70% of mR-
NAs in Caenorhabditis elegans, including those that are de-
rived from polycistronic transcripts (3). C. elegans uses two
classes of SLs, SL1 and SL2, the former being trans-spliced
to pre-mRNAs produced by monocistronic genes and to the
pre-mRNAs derived from the first genes in operons (4). In
contrast, SL2 is spliced exclusively to pre-mRNAs that are
derived from downstream genes in operons (5). SL1 is essen-
tial, but lack of SL1 can at least in part be complemented by
overexpression of SL2 RNA (6), presumably because they
participate in fundamentally similar splicing events and the
end products of these events are functionally similar. How-
ever, features that distinguish SL1 and SL2 trans-splicing
have been defined, making it clear that these are distinct
events (7-9).

SL RNAs form SL ribonucleoprotein particles (RNPs)
and share some properties with the small nuclear RNPs
(snRNPs) involved in cis-splicing reactions, in that they
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adopt similar secondary structures and are bound by pro-
teins recognized by anti-Sm antibodies (10-13).

Additional proteins associated with SL RNAs were iso-
lated from Ascaris splicing extracts, and homologs of these
were identified in C. elegans (14,15). C. elegans SNA-2 was
identified as the ortholog of the 95 kDa Ascaris protein,
and was found to interact with SL1, but not SL2. The
smaller, SL-30p Ascaris protein, was shown to have two C.
elegans homologs, SNA-1 and SUT-1, with the former also
interacting with SL1, while the latter was found to inter-
act with a novel, nematode-specific class of snRNA termed
SmY RNA (15,16). Subsequent work has shown that SNA-
1 and SUT-1 are conserved throughout the Rhabditida (17).
RNAI knockdown of sna-1 or sut-1 causes cold-sensitive
sterility, and loss of both sna-1 and sut-1 function results in
synthetic defects in viability, despite the fact that they show
distinct biochemical properties (15).

To account for this MacMorris and colleagues have pro-
posed that SNA-1 and SUT-1, together with SNA-2, as-
sociate with SL1 and SmY RNP complexes, respectively,
and may function to recycle Sm proteins following trans-
splicing (15). This hypothesis is based on the fact that SL
trans-splicing consumes SL. RNPs by transfer of the 5’ ter-
minal spliced leader sequence onto mRNAs. According to
this model, SNA-1 is involved in the recycling of Sm pro-
teins following SL.1 trans-splicing and thus loss of SNA-1 is
compensated for by the presence of the other SUT-1/SmY-
dependent Sm protein recycling pathway. Similarly, loss of
SUT-1 would be tolerated because of the presence of the
SNA-1/SLI1 Smrecycling pathway. Loss of both SNA-1 and
SUT-1 would compromise both pathways and thus results
in a lethal loss of Sm protein recycling. Consistent with this
model, loss of SNA-2, an essential component of both com-
plexes, is lethal (15).

While this model explains the available molecular and ge-
netic evidence, these novel proteins have not been directly
shown to be required for SL trans-splicing in vivo. To bet-
ter characterize SL trans-splicing we have designed a novel
GFP reporter-based assay allowing us to genetically iden-
tify factors involved in this process in living C. elegans.
We show that depletion of sna-1, sna-2 and sut-1 impairs
SL trans-splicing in vivo and have identified new loss-of-
function alleles of sna-1 from a genetic screen using our
assay. We also show that depletion of Sm protein expres-
sion, and factors involved in snRNP assembly, leads to re-
duced SL trans-splicing. A role for these factors in SL trans-
splicing was confirmed by analyzing SL trans-splicing of the
GFP reporter gene transcripts, and of an endogenous trans-
spliced RNA, by qPCR. To our knowledge, our molecular
analysis demonstrates for the first time in a living system a
role for these factors in SL trans-splicing. SL RNPs con-
sumed during trans-splicing need to be replaced and our
observations imply that the synthesis of new Sm proteins
makes a significant and crucial contribution to the pool of
Sm proteins available for the assembly of new SL RNPs.

MATERIALS AND METHODS
Strains

Nematodes were maintained using standard protocols at
20°C on Escherichia coli B strain OP50 unless other-
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wise stated (18,19). The following strains were used: N2
(Bristol); PE720 [fex308]; PE774 [sna-1(fe45) V; feEx308];
PE766 [sna-1(fe47) V, feEx308]; PE793 [fels11 X]; FX3079
[sut-1(tm3079) 1I]. Transgenic genotypes are as follows:
feEx308 is an extrachromosomal array consisting of
[Pyir.2::outron::gfpMA Py, 3::-mCherry] (‘gfpM'*” indicates
that the initiator methionine of GFP has been changed to
an alanine codon); felsl 1 was generated by y-ray-mediated
integration of the fe Ex308 array into the X chromosome.

Construction of SL trans-splicing reporter transgene and gen-
eration of transgenic strains

We amplified the vit-2 promoter (P,;.>) from wild type
(wt) genomic DNA and inserted the resulting amplicon
into BamHI-Xbal cut pPD95.75 (gift from A. Fire, Stan-
ford School of Medicine; available from Addgene; plas-
mid #1494) to give pAWF29B. A synthetic ‘OU141’ outron
based on previous studies (20) was assembled from oligonu-
cleotides with overlaps filled in by polymerase chain reac-
tion (PCR), and inserted into pGEM-T Easy (Promega).
The resultant plasmid was digested with Agel and BamHI
and the OU145 outron insert was cloned into Agel-BamHI
cut pAWF29B to produce pAWF30. The GFP initiation
codon was changed to an alanine (GCT) by site directed
mutagenesis using the Q5 Site-Directed Mutagenesis Kit
(New England Biolabs), generating pLP6. The plasmid was
sequenced to ensure no additional mutations were induced
during the various cloning steps. This revealed that the
OU141 outron sequence, which contained four copies of a
34 bp synthetic sequence (20) had undergone a truncation
in pLP6 leaving only three copies (Supplementary Figure
S2).

pLP6 was co-injected with pCFJ104, which expresses
mCherry in body wall muscles (21). Five transgenic lines
were generated, and all behaved similarly. One line, con-
taining the extrachromosomal array feEx308, was selected
for further study. The extrachromosomal array was inte-
grated by subjecting transgenic animals to 3800 rad vy ir-
radiation for 20 min (22). Four independent strains (fels/ -
14) were recovered and backcrossed to wt six times. fels/ ]
was mapped to the X chromosome and chosen for use in
this study.

Spliced leader trans-splicing reporter construct genetic screen

A population of PE720 worms were subject to ethyl
methanesulfonate (EMS) mutagenesis (23) and allowed to
become gravid adults. F1 progeny were picked singly to sep-
arate plates and their progeny screened using a stereomi-
croscope equipped with an epifluorescent light source for
the presence of intestinal GFP expression. Individual fluo-
rescent animals were then picked to fresh plates and their
progeny scored to confirm the intestinal GFP expression
phenotype.

Each mutant line was outcrossed with wt males and
non-transgenic cross-progeny males crossed with unmutag-
enized PE720 hermaphrodites to ensure that the phenotype
was not associated with changes to the transgenic array, and
to determine the inheritance pattern of the mutation. Muta-
tions in sna-1 were identified by PCR amplification of exons
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followed by Sanger sequencing (DNA Sequencing and Ser-
vices, University of Dundee).

Epifluorescence microscopy

To determine the proportion of animals expressing GFP,
~50 eggs were seeded on 3 cm RNAI plates with E. coli K-
12 derived HT115(DE3) transformed with the appropriate
feeding plasmid and allowed to grow at 20°C for 3 days to
L4/adult stage. The total number of hatched animals and
the number of GFP fluorescent animals were determined
using a Leica MZ16F fluorescent stereomicroscope, and
used to calculate the proportion of GFP expressing animals.
To measure the intensity of GFP fluorescence, 10 animals
were immobilized on slides with 1% agarose cushions, us-
ing 0.5% l-phenoxy-2-propanol as an anaesthetic, covered
with a cover slip and sealed with Vaseline. A Zeiss Axio-
plan 2 fluorescence microscope was used to capture GFP
and mCherry fluorescence for each animal. ImagelJ software
(24) was used to analyze the intensity of GFP and mCherry
fluorescence. The GFP fluorescence intensity of each an-
imal was normalized with respect to its mCherry fluores-
cence intensity. Statistical analysis by One-way ANOVA on
ranks followed by Dunn’s post-test was done using Graph-
Pad Prism version 5.00 for Windows, GraphPad Software,
San Diego, CA, USA, www.graphpad.com.

RNA Interference

To prepare the RNAIi feeding vectors, DNA was PCR
amplified from genomic DNA or cDNA and inserted
by In-Fusion cloning (Takara Bio Inc.) into the plasmid
pPD129.36 cut with Spel. The targeted genes and the
primers used for PCR amplification are shown in the Sup-
plementary Table S1. The mixtures were directly used to
transform E. coli HT115. DNA sequences were verified by
Sanger sequencing (DNA Sequencing and Services, Univer-
sity of Dundee). The unc-22 RNAI construct was described
earlier (25). RNAi-by-feeding was carried out as previously
described (26), by seeding eggs, isolated by alkali hypochlo-
rite treatment of gravid adults, onto RNAI plates. RNA was
then prepared from L4/young adult animals.

Reverse transcription-quantitative PCR (RT-qPCR)

Total RNA was prepared from C. elegans strains grown on
E. coli using the PureLink RNA Mini kit (Life Technolo-
gies) with modifications for TRIzol treated samples and
DNAse treatment as described by the manufacturer. For
cDNA synthesis, total RNA was reverse transcribed using
oligo(dT) Primers and M-MLV Reverse Transcriptase, ac-
cording to the manufacturer’s instructions. qPCR assays
were designed using the Universal Probe Library Assay De-
sign Centre (Roche) and tested for efficiency (Supplemen-
tary Table S2). qPCR was done in three technical replicates
on a Roche Lightcycler 480 using standard settings. The
Minimum Information for Quantitative Real-Time PCR
Experiments (MIQE) is included as Supplementary Data.
Data was analyzed using the comparative Ct method, as-
suming a primer efficiency of 2 (27). Outron levels were stan-
dardized with respect to internal RNA. Outron levels de-
tected in unc-22 ( RNAi) treated animals were defined as 1.

RESULTS AND DISCUSSION
An in vivo assay to detect loss of SL1 trans-splicing

We generated a transgenic strain that would display GFP
fluorescence dependent on suppression of SL frans-splicing
(Figure 1A). The transgene consists of a modified GFP
gene that is under the transcriptional control of the viz-2
promoter (20). The GFP gene was modified such that the
original ATG initiation codon was changed into an alanine
codon, GCT (GFPM!A), Upstream of this we engineered
a synthetic outron sequence, which has previously been
shown to confer on a pre-mRNA the ability to act as SL1
trans-splicing substrate (20). We placed a new ATG codon
in-frame with the GFP coding region upstream of the 3’
splice site. Thus, in wild type worms, the removal of the syn-
thetic outron from the pre-mRNA during SL trans-splicing
would be expected to produce an mRNA lacking an AUG,
and so no GFP fluorescence would be observed, whereas in
animals with reduced SL trans-splicing, mRNA retaining
the outron and its associated in-frame AUG would be pre-
dicted to accumulate, and thus allow GFP expression (Fig-
ure 1A). As predicted, transgenic lines established with this
P,;.o::outron::GFPMA construct displayed only sporadic,
weak fluorescence (Figure 1B-D: unc-22( RNAi)).

To test the response of the transgenic strain to loss of
SL trans-splicing, we carried out RNA interference (RNA1)
targeted against sna-/ and sna-2, since these genes encode
known components of the SL RNP, and suz-1, because of
its genetic interaction with sna-1 and proposed role in Sm
protein recycling (15). We observed a strong GFP expres-
sion response in animals subjected to sna-1(RNAi) and
sna-2(RNAi), indicating that our assay is responding as
expected (Figure 1B-D). We observed GFP expression in
more than 60% of sut-1( RNAi) treated animals. While flu-
orescence was clearly detectable, it was weak and not sig-
nificantly above the background values obtained in wunc-
22( RNAi) controls (Figure 1B-D), largely because typically
relatively few intestinal cells displayed fluorescence in sut-
1(RNAi) animals. To confirm that GFP expression corre-
lates with retention of the outron in the GFP mRNA we
used gqRT-PCR to measure the levels of non-frans-spliced
outron sequences, and of an internal part of the reporter
gene transcript not involved in SL frans-splicing. Relative
trans-splicing efficiencies were calculated by standardizing
the levels of outron containing transcripts with respect to
the internal fragments, which allows a direct comparison
between different RNAI treatments (Figure 1E). This was
complemented by the analysis of the SL trans-splicing of
endogenous rps-3 transcripts, which are known to be trans-
spliced by SL1 (3) (Figure 1F). In animals treated with
sna-1(RNAi) and sna-2( RNAi), the levels of non-trans-
spliced GFP reporter transcripts (from here on referred to
as outron-gfp RNA) were significantly higher than in the
unc-22( RNAi) treated control animals, reflecting the in-
crease in GFP expression observed (Figure 1 B-D). Further-
more, the levels of non-trans-spliced rps-3 RNA (from here
on referred to as outron-rps-3 RNA) were elevated in sna-1
and sna-2 (RNAi) treated animals (Figure 1F), indicating
that the knockdown of these genes also interferes with the
trans-splicing of endogenous transcripts. In animals sub-
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Figure 1. A novel reporter gene assay for the in vivo detection of reduced SL1 trans-splicing. (A) The P,..>::outron::gfp™!4 transgene engineered to monitor
SL1 trans-splicing. The original ATG of the GFP open reading frame (yellow shading) was changed to a GCT alanine codon. Note the gfp gene contains
three introns. The two mRNA products produced in the presence, or absence of SL1 frans-splicing are shown below, and a cartoon of the predicted GFP
expression in wild-type (wt) worms (green shading indicates intestinal GFP fluorescence). (B) Detection of SL1 trans-splicing inhibition by fluorescence
microscopy. Micrographs of GFP expression in animals carrying the P,;.;::outron::GFPMIA transgene subjected to sna-1, sna-2, sut-1 or unc-22( RNAi).
Exposure times were identical for all micrographs (5 ms). The scale bar corresponds to 100 pm. (C and D) Quantitation of GFP expression in animals
carrying the Py;.2::outron::GFPMIA transgene subjected to sna-1, sna-2, sut-1 or unc-22( RNAi). (C) The proportion of GFP fluorescent animals was de-
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jected to sut-1( RNAi) we were not able to detect a signif-
icant increase of outron-gfp transcripts, reflecting the weak
activation of the reporter observed by microscopy (Figure
1B-D). However, the level of outron-rps-3 transcripts was
elevated, consistent with a role of sut-1 in SL trans-splicing.

As further support for the role of SNA-1 in SL trans-
splicing, we identified two loss-of-function sna-I mutations
from a genetic screen for PE720 worms that displayed ele-
vated levels of GFP fluorescence. The fe45 allele is a C to
T transition on chromosome V at position 6,710,253, creat-
ing a premature stop at codon 34 (CAA > TAA, Q34STOP)
and fe47 is a C to T transition on chromosome V at posi-
tion 6,710,203, creating a premature stop codon at codon 50
(GGA > TGA; W50STOP) (Figure 2). Detailed analysis of
GFP fluorescence was carried out for sna-1(fe47) homozy-
gotes (Figure 2B). In addition, the levels of outron-gfp and
outron-rps-3 transcripts were more than 15-fold higher than
in wild type animals (Figure 2C and D), confirming the in-
hibition of SL frans-splicing in these animals.

Although the two sna-1 alleles that we isolated are vi-
able, previous studies have shown that sna-1( RNAi) results
in cold-sensitive sterility defects and that combined loss of
sna-1 and sut-1 function results in embryonic lethality (15).
We replicated these observations with the sna-1(fe47) allele,
demonstrating that it confers cold-sensitive defects in via-
bility, similar to the suz-1(tm3079) allele (Figure 2E). Fur-
thermore, sut-1; sna-1 double mutants are sickly, with the
majority (92.5%; n = 40) being completely sterile.

In conclusion, these experiments clearly demonstrate that
reduced expression of sna-1 or sna-2 interferes with SL
trans-splicing. The genetic interaction of sna-1 with sut-1,
combined with the weak disturbance of SL trans-splicing
by sut-1 depletion supports a function of sut-1 in SL trans-
splicing. It has been demonstrated that SUT-1 interacts
with SmY RNAs (15), and this provides further support for
a functional role of SmY RNAs in SL trans-splicing. Taken
together, our data demonstrate a role for these molecules in
SL trans-splicing, as proposed in earlier molecular studies.

Previous biochemical analyses of SL RNPs using anti-Sm
antisera imply that SL1 RNA is associated with Sm proteins
(10,13,15). However, since the post-translational modifica-
tion of Sm proteins, symmetrical dimethylation of arginines,
is the major epitope for anti-Sm antibodies (28), it is possi-
ble that other proteins containing this epitope, such as Lsm4
or piRNA associated Mili protein, might explain the ability
of anti-Sm antisera to interact with SL RNPs (29,30). It was
therefore important to directly test the role of Sm proteins
in SL trans-splicing.

Sm proteins form heptameric rings that bind to a variety
of snRNAs and are found in snRNPs acting in, for exam-
ple, mRNA splicing. The major Ul, U2, U4 and US snR-
NAs associate with a ring formed by the Sm proteins B, D1,
D2, D3, F, E and G. In C. elegans, these proteins are en-
coded by snr-1, snr-2, snr-3, snr-4, snr-5, snr-6 and snr-7, re-
spectively (31). In addition, the related LSm proteins form
heptameric rings that interact with other RNAs (32). U6
snRNA, involved in cis-splicing is bound by a ring formed
from LSm2, 3, 4, 5, 6, 7, 8 proteins, which in C. elegans
are encoded by the gut-2, lsm-3, Ism-4, Ism-5, lsm-6, Ism-
7 and Ism-8 genes, respectively. A similar ring where mam-
malian LSmS is replaced by LSm1 (encoded by Ism-1) is in-
volved in the degradation of mRNA (32). Using similarity
searches we also identified the genes K07A41.15, C49H3.4
and M[42.5 as encoding proteins with Sm-like domains
(33). M142.5 was identified by others as an orthologue of
human LSm12 (34), while K07A1.15 is annotated in Worm-
base as the orthologue of human LSm10. LSm10 protein as-
sociates with LSm11 and Sm proteins B, D3, G, E and F to
form the U7 snRNP particle involved in histone RNA pro-
cessing (35,36). Drosophila Lsm10 and Lsm11 mutants die
as pupae (37), indicating that these functions are essential.
Surprisingly, no phenotype has been attributed to KO7A41.15
loss-of-function (33,38,39). We thus wanted to determine
the effect of knocking down the expression of Sm and LSm
protein function on GFP fluorescence in our reporter strain,
as well as on the levels of outron-gfp and outron-rps-3 tran-
scripts.

Figure 3 shows that the knockdown of snr gene tran-
scripts led to GFP fluorescence in all, or nearly all ani-
mals tested, with a more than seven-fold increase of fluo-
rescence compared to the unc-22 ( RNAi) treated control an-
imals (Figure 3A and B). This was accompanied by five-fold
or higher increase of outron-gfp transcripts in animals sub-
jected to snr( RNAi) (Figure 3C). Importantly, snr( RNAi)
also impaired trans-splicing of rps-3 transcripts (Figure
3D). The effect on these transcripts appeared more severe
than the effect on the reporter gene transcripts, with up to
more than 100-fold higher levels of non-trans-spliced tran-
scripts detected in snr-5 and snr-6( RNAiQ) treated animals
compared to the control treatment.

In contrast to the knockdown of Sm protein transcripts,
knockdown of each of the eleven LSm protein transcripts
failed to cause notable GFP fluorescence (Figure 3A and B).
A low proportion of animals, not exceeding 10%, expressed
GFP at a detectable level. This is distinct from the effect of
sna-1 and sna-2( RNAi), and the knockdown of snr RNAsS,
which results in clearly detectable GFP fluorescence in all

termined by fluorescence microscopy. Error bars represent the standard deviation based on between two and five independent experiments (unc-22( RNAi):
2; sna-1( RNAi), sna-2( RNAi): 3, sut-1( RNAi): 5). The total number of animals analyzed is indicated at the top of the graph. (D) The intensity of GFP
fluorescence (in arbitrary units) was determined from micrographs as shown in (B), and standardized with respect to mCherry fluorescence. The graph
plots the GFP fluorescence of 10 animals analyzed for each RNAI treatment; shown are the median and the first and third quartile. ‘ns’ indicates values
not significantly higher than in unc-22( RNAi) animals (P > 0.05; ANOVA). (E and F) Detection of SL1 ¢rans-splicing inhibition by RT-qPCR. Animals
carrying the P,.;::outron::GFPMIA transgene were subjected to sna-1, sna-2, sut-1 or unc-22( RNAi), and trans-splicing of gfp reporter gene and rps-3
transcripts was analyzed by reverse transcription followed by qPCR. The schematic diagrams indicate the position of the primers used (drawings are not to
scale). Outron sequences are shown in blue and the SL1 acceptor sites in purple. Outron-gfp and outron-rps-3 RNA levels were standardized with respect
to an internal part of the mRNA (internal) and levels in unc-22( RNAi) animals were defined as 1. Note that elevated outron-gfp or outron-rps-3 levels
indicate inhibition of SL trans-splicing. ‘ns’ indicates values not significantly higher than in unc-22( RNAi) animals (P > 0.05, t-test). Error bars show
standard deviation from three technical replicates. Similar results were obtained in two independent experiments.



Nucleic Acids Research, 2017, Vol. 45, No. 14 8479

A g 5
sna-1(fe47) S = 4 %
SNA-1 = Q2
C 2
©53
fe47 W50STOP S
fe45 Q34STOP =t 2
=1 o
G
olag

(@
O

A16 - } « 20 - —l— 1.4_-: 2076 ¥ 157G ,
%E 12 - EE 16 - 1-2'_ ns ns %
&3 | °'.’§ 12 ] :?1.0-_@%%@

9% g - = | 5 0.8 o
k\
T IF e g 05 1.
33 44 £3 %
°2 | 358 47 0.2] °
0 +—1- . 0 +—— . 0.0 ——F——
. X X
R 0&\\ eg\\ & &\\6\9\ R Qb;\\ 6\9\
A N O S
o & AN 2 A
& & é"b\y\ é\&,\
=) )

Figure 2. Loss-of-function mutations in sna-1 recovered from a mutagenesis screen for genes involved in SL1 trans-splicing. (A) Schematic representations
of the location of the residues affected by the mutations in the SNA-1 protein. The regions in dark gray are conserved in nematode SNA-1 orthologues
(Supplementary Figure S1). (B) Representative images of wild type (wt) and sna-1(fe47) animals transgenic for Py;.;::outron::gfp™!4, showing intestinal
GFP (green) expression and constitutive mCherry (red) expression in body wall muscle cells. Scale bar represents 100 wm. The graph plots the GFP
fluorescence of 10 animals analyzed; shown are the median and the first and third quartile. (C and D) RT-qPCR analysis of SL1 trans-splicing in wt
and sna-1(fe47) animals carrying the P,;.>::outron:gfpM!A transgene. Trans-splicing of gfp reporter gene (C) and rps-3 transcripts (D) was analyzed as
described in the legend of Figure 1, with levels in wt animals set as 1. Error bars indicate standard deviation from three technical replicates. (E) Viability
of wt, sna-1(fe47) and sut-1(tm3079) animals at 20 and 15°C, as expressed by the proportion of eggs that develop to L4/adult stage in 5-10 independent
experiments. (***P < 0.001; ‘ns’ not significant; ANOVA). Note that while at 20°C there is a slight reduction in viability in suz-1 (tm3079) animals, this is

not significantly different from the viability of sna-1(fe47) animals.

or most animals subjected to the RNAI treatments (Figures
1C and D, 3A and B). It is also distinct from suz-1( RNAi),
which resulted in 62% of animals expressing GFP, albeit at
alow level (Figure 1C and D). In addition, the levels of non-
trans-spliced transcripts in these animals were generally low.
Outron-gfp transcript levels varied between 1.5- and 3.3-
fold of levels observed in the unc-22 ( RNAi) control treated
animals, while levels of outron-rps-3 transcripts varied be-
tween 0.5- and 13.6-fold of those observed in the control
treated animals, and were in many cases not significantly
different from the control (Figure 3D).

The analysis of GFP fluorescence and that of trans-
splicing by qRT-PCR were done independently. The differ-
ence between fluorescence and the detection of non-trans-
spliced transcripts by qPCR in, for example, many of the
Ism( RNAi) treatments may be caused by different sensitiv-
ities of the two methods. Importantly, the combination of
the two approaches, with the inclusion of the analysis of
trans-splicing of an additional endogenous gene, provides
a coherent picture of the effect of the treatments.

Our findings indicate that SL1 trans-splicing is highly sen-
sitive to the knockdown of the genes encoding Sm pro-
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Figure 3. SL1 spliced leader trans-splicing is sensitive to the knockdown of sur, but not Ism, gene transcripts. Detection of SL1 trans-splicing inhibition

by fluorescence microscopy. Quantitation of GFP expression in animals carrying the Py;.»::outron::GFPMIA

transgene subjected to RNAi was done as

described for Figure 1. (A) The proportion of GFP fluorescent animals. The number of animals analyzed are indicated above each dataset. (B) GFP
fluorescence intensity. The graph summarizes individual measurements (z = 30) from three independent experiments. The distribution of measurements
for each of the experiments is similar to the distribution of the pooled data. Median and the first and third quartile are indicated. ‘ns’ indicates values
not significantly higher than in unc-22( RNAi) animals (P > 0.05; ANOVA). (C and D) Detection of SL1 trans-splicing inhibition by RT-qPCR. Animals
carrying the P,;.;::outron::GFPMIA transgene were subjected to RNAI, and rrans-splicing of the gfp reporter gene (C) and rps-3 transcripts (D) was
analyzed by reverse transcription followed by qPCR. Outron-gfp and outron-rps-3 transcript levels were standardized as described in the Figure 1 legend,
and levels in unc-22( RNAi) animals were defined as 1. Note that snr-7( RNAi) was not analyzed by RT-qPCR. ‘ns’ indicates values not significantly higher
than in unc-22( RNAi) animals (P > 0.05; ¢-test). Error bars show standard deviation from three technical replicates.

teins: the knockdown of sur genes, similar to the knock-
down of sna-1 and sna-2, results in strong GFP fluorescence
in the majority or all animals subjected to the RNAI treat-
ments. This is supported by the significant increase of non-
processed outron-gfp and outron-rps3 RNA in these ani-
mals, which also indicates that trans-splicing is impaired.
In contrast, Ism gene knockdown only results in weak GFP
fluorescence in a small number of the treated animals. The
molecular analysis of trans-splicing confirms that any GFP
fluorescence detected is due to a defect in trans-splicing. To-
gether these data indicate that SL trans-splicing is highly
sensitive to the knockdown of the genes encoding Sm pro-
teins, while the knockdown of genes encoding LSm proteins
has no consistent detectable effect.

Since the Sm proteins are also required for assembly of
cis-splicing U snRNPs, one possible interpretation is that
the loss of these factors, all of which apart from Ul are re-
quired for SL trans-splicing (40,41), could contribute to the
impaired SL trans-splicing that we observe. However, two

observations suggest that the depletion of Sm proteins pri-
marily impacts upon SL RNP function in our experiments.
First, the removal, by cis-splicing, of the three GFP trans-
gene introns, two of which contain stop codons, is required
for fluorescence, implying that cis-splicing factors are not
significantly impaired by Sm protein depletion. Second, de-
pletion of multiple LSm proteins, which are required for U6
snRNP formation, has minimal effects on SL trans-splicing,
despite the fact that U6 is required for trans-splicing (42).
Thus, the most likely explanation for the impaired SL trans-
splicing in animals depleted for Sm proteins is due to the ef-
fect of this loss on the formation of the SL RNP. This raises
the question: why would cis-splicing U snRNPs be less sen-
sitive to Sm protein depletion than SL RNPs? One expla-
nation may be that the latter are consumed by the splic-
ing reaction in which they participate, and thus SL trans-
splicing is dependent on the continuous formation of new
SL RNPs. As described earlier, it has been proposed that
Sm protein recycling contributes to the formation of new SL
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Figure 4. Knockdown of snRNP assembly factors inhibits SL1 spliced leader trans-splicing. Detection of SL1 trans-splicing inhibition by fluorescence
microscopy. Quantitation of GFP expression in animals with the P,;..>::outron::GFPMIA transgene subjected to RNAi was done as described for Figure 1.
(A) The proportion of GFP fluorescent animals. The graph summarizes results from two or five independent experiments (unc-22( RNAi): 2; smn-1( RNAi),
smi-1( RNAi), icln-1( RNAi): 5). The total number of animals analyzed is indicated. (B) GFP fluorescence intensity. The graph shows measurements of
fluorescence intensity of 10 animals analyzed for each RNAI treatment. ns indicates values not significantly higher than in unc-22( RNAi) animals (P >
0.05; ANOVA). (C and D) Detection of SL1 trans-splicing inhibition by RT-qPCR. Animals carrying the P,;;.>::outron:: GFPMIA transgene were subjected
to RNAI, and frans-splicing of the gfp reporter gene (C) and rps-3 transcripts (D) was analyzed by reverse transcription followed by qPCR. Outron-gfp and
outron-rps-3 transcript levels were standardized as described in the Figure 1 legend, and levels in unc-22( RNAi) animals were defined as 1. ‘ns’ indicates
values not significantly higher than in unc-22( RNAi) animals (P > 0.05, t-test). Error bars show standard deviation from three technical replicates.
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RNPs (15). Our findings indicate that this is not sufficient,
and that the formation of new SL RNPs is heavily reliant
on the synthesis of new Sm proteins. An alternative, but not
mutually exclusive, explanation is that SL RNA is stabilized
by the integration into RNPs and is therefore sensitive to a
reduction in RNP components.

Recycling of the snRNPs after completion of cis-splicing
is an important, but poorly understood process. Investiga-
tions have mainly focused on the U6 snRNP, which under-
goes major changes during the cis-splicing reaction and is
associated with LSm protein (43,44). Our findings are com-
patible with a model where U6 snRNA and associated LSm
proteins participating in SL frans-splicing are recycled, and
do not require continuous replacement.

To determine whether factors involved in snRINP assem-
bly also play a role in SL trans-splicing, we knocked down
the expression of smn-1, smi-1, icln-1 by RNAI. smn-1 en-
codes a homolog of human SMN and smi-/ an ortholog
of human Gemin2 that interacts with SMN, and, together
with SMN, is a component of the SMN complex (45). This
complex mediates the specific assembly of the heptameric
Sm protein ring onto snRNAs and interacts with both Sm
proteins and snRNAs (46). icln-1 encodes a homolog of the
human methylosome subunit, pICIn. Sm proteins, B/B’, D1
and D3 are modified by symmetrical dimethylation of argi-
nine residues by a complex containing pICln, which pro-
motes the interaction with the SMN complex for snRNP
assembly (29,47.,48).

Knockdown of smn-1, smi-1 and icln-1 led to GFP fluo-
rescence in most of the animals subjected to RNAI, sim-
ilar to the knockdown of sna-1, sna-2 and the snr genes
described above (Figures 1C and D, 3A and B), with icln-
1(RNAi) giving the strongest effect (Figure 4A and B). The
inhibition of SL trans-splicing by smi-1 and icln-1 knock-
down was confirmed by the increased levels of outron-gfp
and outron-rps-3 transcripts (Figure 4C and D), indicat-
ing that the knockdown of these genes inhibits SL trans-
splicing. smn-1 knockdown caused a weaker effect: while
reporter gene activation was detected in the majority of an-
imals, the fluorescence was not strong enough to produce
a significant difference in the quantitative comparison to
unc22( RNAi) animals (Figure 4A and B). However, the in-
crease of non-processed outron-gfp RNA in smn-1( RNAi)
animals indicates that trans-splicing is impaired. These data
suggest that the same biogenesis factors involved in snRNP
assembly are required for these processes during the lifecy-
cle of SL RNPs, further reinforcing the similarities between
the U snRNPs and SL RNPs.

In conclusion, we have developed an in vivo assay that
allows us to monitor the levels of SL trans-splicing in C.
elegans, and have confirmed that there is a strong corre-
lation between GFP fluorescence and outron-retention in
SL trans-spliced mRNAs. This has allowed us to demon-
strate physiological roles in SL trans-splicing for SNA-1,
SNA-2 and SUT-1, and for Sm proteins and snRNP as-
sembly factors. Our findings indicate that Sm protein recy-
cling is not sufficient to replace the SL RNPs used up dur-
ing trans-splicing, but that the assembly of new SL RNPs
is heavily reliant on the synthesis of new Sm proteins. Fur-
thermore, we have shown that this assay system can be em-
ployed to identify mutations in genes specifically involved

in SL frans-splicing. Further application of such screens, in-
cluding searches for lethal mutations, should allow the com-
prehensive identification of molecules involved in this fun-
damental nematode process. Finally, we envisage that this
will be useful as a bioassay in the search for compounds
that inhibit SL trans-splicing.
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