46 research outputs found

    Veterinary decision making in relation to metritis - a qualitative approach to understand the background for variation and bias in veterinary medical records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results of analyses based on veterinary records of animal disease may be prone to variation and bias, because data collection for these registers relies on different observers in different settings as well as different treatment criteria. Understanding the human influence on data collection and the decisions related to this process may help veterinary and agricultural scientists motivate observers (veterinarians and farmers) to work more systematically, which may improve data quality. This study investigates qualitative relations between two types of records: 1) 'diagnostic data' as recordings of metritis scores and 2) 'intervention data' as recordings of medical treatment for metritis and the potential influence on quality of the data.</p> <p>Methods</p> <p>The study is based on observations in veterinary dairy practice combined with semi-structured research interviews of veterinarians working within a herd health concept where metritis diagnosis was described in detail. The observations and interviews were analysed by qualitative research methods to describe differences in the veterinarians' perceptions of metritis diagnosis (scores) and their own decisions related to diagnosis, treatment, and recording.</p> <p>Results</p> <p>The analysis demonstrates how data quality can be affected during the diagnostic procedures, as interaction occurs between diagnostics and decisions about medical treatments. Important findings were when scores lacked consistency within and between observers (variation) and when scores were adjusted to the treatment decision already made by the veterinarian (bias). The study further demonstrates that veterinarians made their decisions at 3 different levels of focus (cow, farm, population). Data quality was influenced by the veterinarians' perceptions of collection procedures, decision making and their different motivations to collect data systematically.</p> <p>Conclusion</p> <p>Both variation and bias were introduced into the data because of veterinarians' different perceptions of and motivations for decision making. Acknowledgement of these findings by researchers, educational institutions and veterinarians in practice may stimulate an effort to improve the quality of field data, as well as raise awareness about the importance of including knowledge about human perceptions when interpreting studies based on field data. Both recognitions may increase the usefulness of both within-herd and between-herd epidemiological analyses.</p

    Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality

    Get PDF
    Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.publishedVersio

    Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura

    Get PDF
    Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.</p

    Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.Peer reviewe
    corecore