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Abstract

The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the
late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis.
On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions,
decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but
recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is
implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene
was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the
NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G.T mutation in
exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be ‘‘probably
damaging’’ to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic
countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for
the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy
dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is
conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that
the G.T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of
a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into
pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to
eliminate the disease in Alaskan Malamutes.
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Introduction

The first cases of inherited polyneuropathy in Alaskan

Malamutes were observed in Norway more than 30 years ago.

Polyneuropathy in Alaskan Malamutes is one of several canine

inherited neuropathies described in 22 breeds of dog that share

many features with the human Charcot-Marie-Tooth (CMT)

group of diseases [1]. CMT in humans is a heterogeneous group of

inherited polyneuropathies characterized clinically by motor

weakness and sensory loss. This group of diseases is named after

the three clinicians who first described it in 1886 but is also known

as hereditary motor and sensory neuropathy (HMSN) [2].

Mutations in more than 40 known genes expressed in Schwann

cells and neurons are known to be causative of CMT, and the

various forms can have an autosomal recessive, autosomal

dominant or X-linked mode of inheritance. The mode of

inheritance together with the measured motor and sensory nerve
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conduction velocity (NCV) provides the basis for classification of

the CMT phenotypes into several subgroups [3].

A novel autosomal recessive HMSN was first described in

a small gypsy community of Lom in Bulgaria, and designated

Hereditary Motor and Sensory Neuropathy-Lom (HMSNL) [4].

This neuropathy has a childhood onset and initial presentation as

a gait abnormality with progression to limb weakness, sensory loss,

skeletal deformities most notably in the feet, and deafness.

Neuropathological changes within peripheral nerve biopsies

include severe depletion of myelinated nerve fiber populations,

and in younger subjects, hypertrophic changes including onion

bulb formations [5]. The HMSNL locus was mapped to a narrow

interval on human chromosome 8q24 [4], where the causative

mutation was subsequently found to be a nonsense mutation at

amino acid residue 148 in the N-myc downstream-regulated gene

1 (NDRG1) by Kalaydjieva et al. [6]. An inherited polyneuropathy

in which the causative mutation is a 10 bp deletion in exon 15 of

NDRG1 has recently been identified in Greyhound dogs. This

mutation gives rise to a frameshift and a protein which is longer

than the wild type protein [7]. The onset of clinical signs is at three

to nine months of age and includes exercise intolerance, pro-

gressive ataxia, muscle atrophy and inspiratory stridor.

The first cases of polyneuropathy in the Alaskan Malamute

population appeared in Norway in the late 1970’s. Onset of signs

was noticed in seven- to 18-months-old dogs. Affected dogs were of

both sexes. Presenting clinical signs were exercise intolerance,

inspiratory stridor and pelvic limb ataxia. Gait abnormalities

progressed to ambulatory paraparesis, in some cases deteriorating

to non-ambulatory tetraparesis. Additional examinations revealed

decreased postural reactions, decreased to absent spinal reflexes,

muscle atrophy and laryngeal paresis. On electromyography

(EMG) testing, moderately to severely affected dogs and/or

protracted cases had diffuse spontaneous activity, such as

fibrillation potentials and positive sharp waves, in proximal and

distal muscles in all four limbs. In addition, decreased motor nerve

conduction velocities were found. The only aberrant finding on

electrophysiology testing in mild and/or early cases was sponta-

neous activity in EMG of interosseus muscles [8–10]. Based on

pedigree studies and the result of a test mating, it was suggested

that polyneuropathy in Alaskan Malamutes was inherited in an

autosomal recessive manner, and the disease was consequently

named ‘‘hereditary polyneuropathy of Alaskan Malamutes’’

(AMPN) [9–10]. More recently, a number of North American

cases expressing many similarities to those seen in Norway were

described [11].

AMPN was considered to be virtually eradicated in Scandinavia

through breeding programmes as new cases had not been reported

for many years. However, a case of AMPN was diagnosed in

Denmark in 2009, indicating that the disease had reappeared in

Scandinavia. Single cases of AMPN had also occurred in Norway

and Sweden during the last decade. The Scandinavian Alaskan

Malamute Polyneuropathy survey including research partners

from Denmark, Norway and Sweden was therefore initiated in

2010 and has later been extended by collaboration with

researchers in Finland and the USA. The main focus for this

research was to identify the genetic basis for AMPN.

Results

Clinical Characterization of Affected Dogs
Onset of clinical signs was noticed from the age of three to 19

months, (median, 13.5 months). As presenting clinical signs, voice

changes and/or noisy breathing predominated - in some cases in

combination with paraparesis. A few affected dogs expressed

paraparesis as the only presenting clinical sign. Typically, clinical

signs slowly progressed to exercise intolerance, gait abnormalities

and inspiratory stridor, suggesting the presence of laryngeal paresis

or paralysis. Gradually, gait abnormalities progressed from

paraparesis and ataxia to tetraparesis and abnormal pelvic limb

movements of a ‘‘bunny-hopping’’ nature. Many of the affected

dogs had difficulty standing and walking up stairs and eventually

collapsed. With progression of the disease, the dogs developed

muscle atrophy, primarily in the pelvic limbs, but also in the

paraspinal musculature. Electrophysiology testing was in accor-

dance with the results reported by Moe and Bjerkås [9] and Moe

[10]. All tested dogs had fibrillation potentials and positive sharp

waves in several muscles at EMG testing. The majority of cases

tested had reduced motor nerve conduction velocities, with inter-

individual variation interpreted as a reflection of the severity and

stage of disease.

Characteristic histopathological findings in the cranial tibial

muscle and fibular nerve are shown from two Alaskan Malamutes

(Figure 1). The pattern of muscle fiber atrophy is typical of

denervation with angular atrophied fibers occurring in small and

large groups and involving both muscle fiber types. Fiber type

grouping, indicative of reinnervation, was an inconsistent finding

depending on the chronicity of the clinical signs. Variable nerve

fiber loss, endoneurial fibrosis and axonal degeneration were

consistently found in the fibular nerve and within intramuscular

nerve branches.

Sequencing
Since NDRG1 is mutated in Greyhounds with a similar

polyneuropathy, this gene was considered a candidate gene for

AMPN. The coding sequence of the canine NDRG1 is 1152 bp

long and comprises 15 exons encoding a protein of 384 amino

acids. Except for an inter species variation in the sequence length

of exon 15, the coding sequence is well conserved (94.7% sequence

similarity) in mammals (see Figure 2 for a multiple protein

alignment). The sequencing of the coding regions in one AMPN-

affected and one healthy Alaskan Malamute revealed synonymous

mutations in exon 1 and 9 and a single non-synonymous G.T

(basepair 293) substitution in exon 4. The mutation in exon 4

causes a Gly98Val amino acid substitution which was predicted to

be probably damaging to the protein function with a score of 1.000

(sensitivity: 0.00; specificity: 1.00) by PolyPhen-2 [12]. To confirm

that the mutation resides in a transcribed region of the gene, the

canine NDRG1 transcript was also sequenced revealing the same

sequence length and amino acid sequence (JX987297).

Genotyping
A total of 102 Alaskan Malamute dogs from Denmark, Norway,

Sweden, Finland and the USA known to be either healthy (n = 73),

obligate carriers (healthy parents of affected offspring) (n = 7) or

diagnosed with AMPN (n = 22) were genotyped for the G.T

substitution. All affected Alaskan Malamutes had the T/T

genotype. The healthy dogs had the G/G genotype except for

13 which had the G/T genotype. All obligate carriers had the G/

T genotype. These results indicate complete co-segregation of the

mutation with the disease according to an expected autosomal

recessive mode of inheritance. Another 201 dogs representing 38

other breeds all had the G/G genotype (see S1 for a list of breeds).

Among these, two Leonberger and two Siberian Huskies were

diagnosed with polyneuropathy. Four Alaskan Malamutes with

neurological signs caused by other diseases (cauda equina

syndrome, cervical cord lesion, diabetes and inflammatory

polyneuropathy respectively) also had the G/G genotype.

Polyneuropathy in Alaskan Malamutes
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Discussion

Identification of the genetic basis for AMPN will allow for

establishment of an appropriate breeding programme and is

therefore beneficial to the general health of the Alaskan Malamute

breed. Moreover, this study also highlights the advantages of dogs

for comparative genetic studies. Dogs are medically surveyed on

a regular basis and the dog population consists of several partially

inbred breeds with known, and from time to time new, genetic

disorders segregating in most of the breeds. When considering the

extensive amount of dog genome resources and rapidly increasing

technologies, canine disorders have a great potential for serving as

models for analogous human diseases [13].

Various forms of inherited motor and sensory neuropathies

have been identified in 22 different dog breeds over the past 50

years [1]. A causative mutation has only been identified in

Greyhound dogs with a mutation in the NDRG1 gene [7].

Our results and observations support the theory that the

mutation identified in Alaskan Malamutes causes AMPN: The

clinical signs in Greyhound dogs and Alaskan Malamutes with

polyneuropathy are comparable. The nonsynonymous G.T

substitution causes the substitution (Gly98Val) of a residue that

is conserved in mammals and this mutation was predicted to be

‘‘probably damaging’’ by PolyPhen-2. It is therefore reasonable to

expect this substitution to have an effect on the function of the

protein.Affected dogs were homozygous for the mutation, obligate

carriers were heterozygous and healthy dogs were homozygous for

Figure 1. Muscle and peripheral nerve pathology in Alaskan Malamutes with polyneuropathy and a mutation in NDRG1.
Representative cranial tibial muscle and peroneal nerve biopsy transverse sections from a two year old female Alaskan Malamute (a,b) and a three
year old female Alaskan Malamute (c,d) with histopathological findings consistent with polyneuropathy. Large and small groups of atrophic fibers
were present with variable severity and fatty infiltration (a,c. H&E stain). A moderate to marked depletion of myelinated fibers was evident in resin
embedded nerve biopsy sections (b,d. Toluidine blue stain). Nerve fiber loss resulted from chronic axonal degeneration (arrows in b,d).
doi:10.1371/journal.pone.0054547.g001
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the wild type allele (except for 13, which were heterozygous). This

is in concordance with autosomal recessive inheritance and also

supports the result of the test mating made in Norway in 1983

[10]. Moreover, the fact that NDRG1 is also mutated in

Greyhounds and humans with some forms of polyneuropathy

supports the hypothesis that the G.T substitution causes AMPN.

If this SNP did not cause disease, it might have existed in other

breeds as well. However, it was not detected in any of the 201 dogs

representing 38 other breeds. The four Alaskan Malamutes with

polyneuropathy with other aetiologies than AMPN illustrate that

phenocopies have to be taken into consideration also with this

disease. One could speculate that this mutation is not causative but

in linkage disequilibrium with another causative mutation in the

same region. Therefore protein coding genes within 5MB

surrounding the NDRG1 gene were scrutinized using the

annotation in the UCSC browser in the human orthologous

region on chromosome 8 (UCSC Human Feb. 2009 (GRCh37/

hg19)). In addition to NDRG1 a total of 13 protein coding genes

are annotated in this region. Considering the functional annota-

tion only one gene, KCNQ3 (potassium channel, voltage-gated,

KQT-like subfamily, member 3), is a potential candidate gene.

However, since this gene is primarily important for cognitive

function and epilepsy [14] we have not studied it further in the

context of polyneuropathy in Alaskan Malamutes.

Figure 2. Multiple alignment of mammalian NDRG1 proteins. Alignment of NDRG1 protein sequences from five mammalian species: Homo
sapiens, Pan troglodytes, Canis lupus, Bos taurus and Mus musculus shows a sequence similarity of 94.7%. Residue 98 (gly, marked with a frame)
which is substituted in Alaskan Malamutes with the G.T mutation, is conserved in the five species.
doi:10.1371/journal.pone.0054547.g002
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Rentmeister et al. [15] recently described AMPN as a polygenic

hereditary disease with variable phenotypic expression. However,

their diagnostic criteria were very broad and ranged from

subclinical forms with signs of marginal degenerative polyneuro-

pathy (based on histopathology) to severe cases supported by EMG

and histopathology. Age of onset for dogs in their study varied

from seven months to 12 years. In our study the dogs are

phenotyped as ‘‘affected’’ only when presenting with the

characteristic clinical signs and a defined age of onset (three to

19 months) and most cases were confirmed with histopathology.

When using these criteria, we found 100% accordance with the

genotyping results and the hypothesis of autosomal recessive

inheritance.

A mouse model, stretcher, with total Ndrg1 deficiency (in frame

deletion of Ndrg1 exons 10–14) shows clinical signs characterized

by tremor and progressive paralysis of the pelvic limbs from the

age of five weeks. Histological examinations reveal demyelination

and axonal degeneration of peripheral nerves [16]. Even though

the same gene is mutated in the stretcher mouse and the Alaskan

Malamutes, the different mutations in two different species are

likely to have different effects on NDRG1 function that in turn

result in phenotypes that are not completely comparable.

Although the stretcher and the AMPN phenotypes have different

characteristics, the progressive paralysis of the pelvic limbs and

axonal degeneration are observed in both species which further

supports the association between this phenotype and mutations in

NDRG1.

NDRG1 is ubiquitously expressed in various tissues in humans

[17] and in rodents and the highest mRNA level is found in the

sciatic nerve [18]. Berger et al. [18] furthermore show that the

NDRG1 is not expressed in the motor and sensory neurons but

highly expressed in Schwann cells where its expression increases

shortly after birth and declines in the adult nerve. Axonotomy

causes NDRG1 downregulation indicating an axon-Schwann cell

integrity dependent expression [18]. These results show that

NDRG1 is important not only for myelination but also for the

maturation and maintenance of the neuron. In both the stretcher

mouse and human cases of HMSNL the demyelination is thought

to cause secondary axonal degeneration. In our study of Alaskan

Malamutes axonal degeneration without demyelination was

observed which also suggests NDRG1 to be central in de-

velopment and maintenance of the axon.

Inherited polyneuropathy in Greyhound dogs may have an

earlier clinical onset (three to nine months) compared to both the

AMPN cases of this study (three to 19 months, median: 13.5

months) and in previous studies (seven to 19 months) [7,10,11].

Otherwise the clinical and histological findings are similar. One

could speculate that the earlier onset in Greyhound dogs is a result

of the frameshift mutation having a more severe impact on the

protein function than the amino acid substitution observed in

Alaskan Malamutes. In both breeds other contributing factors such

as the environment, hormonal influences or modifying genes may

influence the age of onset and the severity of the disease in

individual dogs.

We conclude that the G.T substitution is almost certainly the

mutation that causes AMPN.

Since the same mutation is found in affected Alaskan

Malamutes from Denmark, Norway, Sweden, Finland and USA,

it must have arisen years ago in a common founder. It is therefore

reasonable to believe that the same mutation has also caused

AMPN in the first Alaskan Malamutes diagnosed by Moe and

Bjerkås [9] and by Braund et al. [11].

Materials and Methods

Ethics Statement
All samples were collected by veterinarians from privately

owned dogs with consent from the dog owners and in accordance

with the institutional guidelines for animal welfare and ethics. No

ethics committee approval was required as the study was

conducted in cooperation with veterinarians at small animal

clinics and all diagnostic procedures would have been carried out

anyway.

Animal Material
A total of 102 Alaskan Malamute dogs from Denmark, Norway,

Sweden, Finland and the USA known to be either healthy

(control), obligate carriers or diagnosed with AMPN were included

in the study. Control dogs and obligate carriers were checked by

veterinarians in the research group. None of those dogs displayed

any neurological gait deficits. Affected dogs (n = 22) had a clinical

presentation in accordance with AMPN, as described in the results

section (clinical characterization). Electrophysiology testing, per-

formed in 16 affected dogs, was consistent with polyneuropathy. In

addition, in the majority of the cases the diagnosis was confirmed

by histopathology on nerve- and muscle biopsies (n = 13) or post

mortem samples of the same tissues (n = 1). Moreover, a panel of

201 DNA samples representing 38 different dog breeds (see S1 for

a list of breeds) were included to investigate the genotype in other

breeds.

Another four Alaskan Malamutes (two from Norway, two from

the USA) were presented to veterinarians in the research group for

neurological problems, but were excluded from this study. They

were all diagnosed with diseases other than AMPN, explaining

their neurological signs (cauda equina syndrome, cervical cord

lesion, diabetes and inflammatory polyneuropathy respectively)

but were genotyped anyway.

Muscle and Nerve Biopsies
Biopsies (cranial tibial muscle and fibular nerve) were collected

under general anesthesia or in conjunction with euthanasia using

an open biopsy procedure. Unfixed muscles were shipped under

refrigeration by an express service to a specialized laboratory.

Following receipt of tissues, unfixed muscles were flash frozen in

isopentane pre-cooled in liquid nitrogen and stored at 280uC until

further processed. Following cryosectioning, a standard panel of

histochemical stains and reactions including fiber typing was

performed on each muscle [19]. Fixed muscle were immersed into

10% neutral buffered formalin, processed routinely and stained

with hematoxylin and eosin. Fixed nerve biopsies were resin

embedded and evaluated in semi-thin (1 mm) sections.

Isolation of DNA
EDTA stabilized blood samples were collected from 297 of the

dogs. DNA was extracted using a salt precipitation method [20].

In 10 cases for which muscle biopsies were evaluated in cryostat

sections, DNA was extracted from frozen archived tissue using the

DNEasy Blood & Tissue Kit, Qiagen (Hilden, Germany) following

the manufacturer’s recommendations.

Sequencing of NDRG1 Exons in Genomic DNA
Each of the 15 exons were PCR amplified one by one in one

affected and one healthy dog as described previously [7]. Five ml of

each PCR product were run on a 1.5% agarose gel to evaluate the

purity and specificity of the PCR reactions. The PCR products

were purified using MilliporeTM Montage PCR96 Cleanup Kit

(Billerica, Middlesex County, Massachusetts, USA) according to

Polyneuropathy in Alaskan Malamutes
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the manufacturer’s recommendations. Two sequencing reactions,

one for each primer, were made for all PCR products using Big

DyeH Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems

(Foster City, California, USA) and following the manufacturer’s

instructions. The sequencing products were purified using

MilliporeTM Montage SEQ96 Sequencing Reaction Cleanup Kit

(Billerica, Middlesex County, Massachusetts, USA) according to

the manufacturer’s instructions. Sequencing was done using ABI

PRISMH 3130 Genetic Analyzer, Applied Biosystems (Foster City,

California, USA).

Sequencing of the Canine NDRG1 Transcript
After euthanasia of two Belgian Shepard dogs (not affected with

polyneuropathy), brain tissue was sampled and snap frozen in

liquid nitrogen. RNA was isolated using Qiagen RNeasy Lipid

Mini kit (Qiagen, GmbH, Hilden, Germany) following the

manufacturer’s recommendations. cDNAs were synthesized from

1 mg of total RNA using ImProm-IITM Reverse Transcription

System (Promega, Madison, Wisconsin, USA) and a mixture of

random hexamers: oligodT in a ratio of 3:1, according to the

manufacturer’s recommendations.

For amplification of the NDRG1 transcript two pairs of primers

were designed using Primer 3 software [21]: the 59 UTR primer

was designed from a cDNA clone sequence (DN377072.1) (59UTR

L: 59-TTCGGCAGGTGACAGCAG-39), the 39 UTR primer was

designed from a cDNA clone sequence (DN401314.1) (39UTR R:

59-CGTGAGCCCAGAGTCCAG-39) and the two internal pri-

mers were designed from our previously described genomic exon 7

sequence (Exon 7 L: 59-AGGGCCTCGTCCTTATCAAC-39)

and exon 9 sequence (Exon 9 R: 59-GACCACCTC-

CACGTTGTTCT-39). PCR reactions with both primer pairs

were performed on cDNAs generated from the two brain tissue

samples using 2.5 ng/ml cDNA, 2.0 mM MgCl2, Qiagen Hot-

StartTaqHDNA Polymerase (Qiagen, GmbH, Hilden, Germany)

and an annealing temperature of 60uC. Five ml of each PCR

product were run on a 1.5% agarose gel to evaluate the specificity

of the PCR reactions. The PCR products were purified using

GFXTM PCR- and Gel Band Purification Kit (GE Healthcare Life

Sciences, Wauwatosa, Wisconsin, USA).

Two sequencing reactions, one for each primer, were made for

all PCR products using Big DyeH Terminator v3.1 Cycle

Sequencing Kit, Applied Biosystems (Foster City, California,

USA) following the manufacturer’s instructions. The sequencing

products were purified using MilliporeTM Montage SEQ96

Sequencing Reaction Cleanup Kit (Billerica, Middlesex County,

Massachusetts, USA) according to the manufacturer’s instructions.

Sequencing was performed using ABI PRISMH 3130 Genetic

Analyzer, Applied Biosystems (Foster City, California, USA).

Sequence Analysis
For the sequence assembly, analysis, SNP detection and

translation of the cDNA sequence, DNASTAR LasergeneH
SeqMan ProTM (Madison, Wisconsin, USA) was used. Poly-

Phen-2 [12] was used to evaluate the impact of the amino acid

substitution on the protein. Alignment of the human

(NP_001128714.1), the chimpanzee (XP_001140704.1), the ca-

nine (JX987297), the bovine (NP_001030181.1) and the murine

(NP_032707.2) NDRG1 protein sequences was performed using

the AliBee Multiple Alignment tool (http://www.genebee.msu.su/

services/malign_reduced.html).

TaqMan
For genotyping of the remaining dogs, a TaqMan assay was

designed by Applied Biosystems (Foster City, California, USA)

using the following sequence: ACCCAGATGTATTCTTGCCC-

TACTTGTGCCTCTTCTCTCTCTCCCCTGCCTGTTCTC-

CAGACAAAACCTGCTACAACCCCCTCTTCAACTCT-

GAGGACATGCAGGAGATCACACAG-

CACTTCGCCGTCTGCCATGTGGATGCCCCTG(G/

T)CCAGCAGGACGGCGCTGCCTCCTTCCCTGTGGGG-

TAAGACCCGGAGCCTTGTCCCCAGGAGGGGGACAA-

GAAAGCCACGCGGGTGGACTGGGGGTGGGGGGTGC-

GAAGGCAGGCATCACACTGAGT Genotyping was

performed according to the manufacturer’s instructions.

Supporting Information

S1 Two hundred and one dogs representing these 38
listed dog breeds were genotyped for the G.Tmutation.
All had the wild type G/G genotype.

(DOC)
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13. Matiasek K, Drögemüller C (2011) Charcot-Marie-Tooth disease: Inherited

neuropathies revisited. Vet J 188: 254–255.
14. Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, et al. (2000)

Colocalization and coassembly of two human brain M-type potassium channel

subunits that are mutated in epilepsy. Proc Natl Acad Sci USA 97: 4914–4919.
15. Rentmeister K, Bilzer T, Petri S, Schanen G, Fehr M, et al. (2012) Hereditary

polyneuropathy in the Alaskan Malamute. Tierarztliche Prax K 40: 26–34.
16. King RH, Chandler D, Lopaticki S, Huang D, Blake J, et al. (2011) Ndrg1 in

development and maintenance of the myelin sheath. Neurobiol Dis 42: 368–380.

17. Zhou R-H, Kokame K, Tsukamoto Y, Yutani C, Kato H, et al. (2001)
Characterization of the Human NDRG Gene Family: A Newly Identified

Member, NDRG4, Is Specifically Expressed in Brain and Heart. Genomics 73:
86–97.

18. Berger P, Sirkowski E, Scherer SS, Suter U (2004) Expression analysis of the N-

Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are

the primary disease target in hereditary motor and sensory neuropathy-Lom.

Neurobiol Dis 17: 290–299.

19. Dubowitz V, Sewry CA (2007) Histological and histochemical stains and

reactions. In: Dubowitz V, Sewry CA, editors. Muscle biopsy. A practical

approach. London: Saunders Elsevier. 21–39.

20. Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, et al. (1989) A simple

and efficient non-organic procedure for isolation of genomic DNA from blood.

Nucleic Acids Res 17: 8390.

21. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for

biologist programmers. Methods Mol Biol 132: 365–386.

Polyneuropathy in Alaskan Malamutes

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e54547


