119 research outputs found
The increase in pulmonary arterial pressure caused by hypoxia depends on iron status
Hypoxia is a major cause of pulmonary hypertension. Gene expression activated by the transcription factor hypoxia-inducible factor (HIF) is central to this process. The oxygen-sensing iron-dependent dioxygenase enzymes that regulate HIF are highly sensitive to varying iron availability. It is unknown whether iron similarly influences the pulmonary vasculature. This human physiology study aimed to determine whether varying iron availability affects pulmonary arterial pressure and the pulmonary vascular response to hypoxia, as predicted biochemically by the role of HIF. In a controlled crossover study, 16 healthy iron-replete volunteers undertook two separate protocols. The ‘Iron Protocol’ studied the effects of an intravenous infusion of iron on the pulmonary vascular response to 8 h of sustained hypoxia. The ‘Desferrioxamine Protocol’ examined the effects of an 8 h intravenous infusion of the iron chelator desferrioxamine on the pulmonary circulation. Primary outcome measures were pulmonary artery systolic pressure (PASP) and the PASP response to acute hypoxia (ΔPASP), assessed by Doppler echocardiography. In the Iron Protocol, infusion of iron abolished or greatly reduced both the elevation in baseline PASP (P < 0.001) and the enhanced sensitivity of the pulmonary vasculature to acute hypoxia (P = 0.002) that are induced by exposure to sustained hypoxia. In the Desferrioxamine Protocol, desferrioxamine significantly elevated both PASP (P < 0.001) and ΔPASP (P = 0.01). We conclude that iron availability modifies pulmonary arterial pressure and pulmonary vascular responses to hypoxia. Further research should investigate the potential for therapeutic manipulation of iron status in the management of hypoxic pulmonary hypertensive disease
Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology
BACKGROUND: The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. METHODS AND FINDINGS: Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. CONCLUSIONS: The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF
Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation
About a quarter of pre-menopausal women will suffer from heavy menstrual bleeding in their lives. Here, Maybin and colleagues show hypoxia and subsequent activation of HIF-1α during menses are required for normal endometrial repair, and identify pharmacological stabilisation of HIF-1α as a potential therapeutic strategy for this debilitating condition
Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo
<p>Abstract</p> <p>Background</p> <p>Epigallocatechin-3-gallate (EGCG), one of the major catechins in green tea, is a potential chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression of heat shock proteins (HSPs) and tumor suppression.</p> <p>Methods</p> <p>Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen bromide (CNBr)-activated Sepharose 4B. <it>In vivo </it>effect of EGCG on tumor growth was examined in a xenograft model.</p> <p>Results</p> <p>Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h) or oxidative stress (H<sub>2</sub>O<sub>2</sub>, 500 μM for 24 h). Moreover, treatment with EGCG (10 mg/kg) in a xenograft model resulted in delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression.</p> <p>Conclusions</p> <p>Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and suggest EGCG as a drug candidate for the treatment of human cancer.</p
Immunohistochemical assessment of intrinsic and extrinsic markers of hypoxia in reproductive tissue: differential expression of HIF1α and HIF2α in rat oviduct and endometrium
Hypoxia is thought to be critical in regulating physiological processes within the female reproductive system, including ovulation, composition of the fluid in the oviductal/uterine lumens and ovarian follicle development. This study examined the localisation of exogenous (pimonidazole) and endogenous [hypoxia inducible factor 1α and 2α (HIF1α, -2α), glucose transporter type 1 (GLUT1) and carbonic anhydrase 9 (CAIX)] hypoxia-related antigens within the oviduct and uterus of the rat reproductive tract. The extent to which each endogenous antigen co-compartmentalised with pimonidazole was also assessed. Female Wistar Furth rats (n = 10) were injected intraperitoneally with pimonidazole (60 mg/kg) 1 h prior to death. Reproductive tissues were removed immediately following death and fixed in 4% paraformaldehyde before being embedded in paraffin. Serial sections were cut (6–7 μm thick) and antigens of interest identified using standard immunohistochemical procedures. The mucosal epithelia of the ampulla, isthmus and uterus were immunopositive for pimonidazole in most sections. Co-compartmentalisation of pimonidazole with HIF1α was only expressed in the mucosa of the uterus whilst co-compartmentalisation with HIF2α was observed in the mucosa of the ampulla, isthmus and uterus. Both GLUT1 and CAIX were co-compartmentalised with pimonidazole in mucosa of the isthmus and uterus. This study confirms that mucosal regions of the rat oviduct and uterus frequently experience severe hypoxia and there are compartment specific variations in expression of endogenous hypoxia-related antigens, including the HIF isoforms. The latter observation may relate to target gene specificity of HIF isoforms or perhaps HIF2α’s responsiveness to non-hypoxic stimuli such as hypoglycaemia independently of HIF1α
Inhibition of StearoylCoA Desaturase-1 Inactivates Acetyl-CoA Carboxylase and Impairs Proliferation in Cancer Cells: Role of AMPK
Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Δ9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation
Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor
<p>Abstract</p> <p>Background</p> <p>Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma.</p> <p>Methods</p> <p>HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration.</p> <p>Results</p> <p>17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration.</p> <p>Conclusions</p> <p>Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in <it>in vivo </it>induction of HIF. <it>In vitro </it>data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.</p
Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development
Neuropilin-1 Modulates p53/Caspases Axis to Promote Endothelial Cell Survival
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets
- …