602 research outputs found

    Is there any evidence that ionised outflows quench star formation in type 1 quasars at z<1?

    Get PDF
    The aim of this paper is to test the basic model of negative AGN feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. We consider a sample of 224 quasars selected from the SDSS at z<1 observed in the infrared band by Herschel. We evaluate the star formation rate in relation to several outflow signatures traced by the [OIII]4959,5007 and [OII]3726,3729 emission lines in about half of the sample with high quality spectra. Most of the quasars show asymmetric and broad wings in [OIII], which we interpret as outflow signatures. We separate the quasars in two groups, ``weakly'' and ``strongly'' outflowing, using three different criteria. When we compare the mean star formation rate in five redshift bins in the two groups, we find that the SFRs are comparable or slightly larger in the strongly outflowing quasars. We estimate the stellar mass from SED fitting and the quasars are distributed along the star formation main sequence, although with a large scatter. The scatter from this relation is uncorrelated with respect to the kinematic properties of the outflow. Moreover, for quasars dominated in the infrared by starburst or by AGN emission, we do not find any correlation between the star formation rate and the velocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A possibility is that feedback is effective over much longer timescales than those of single episodes of quasar activity.Comment: 18 pages, new version that implements the suggestions of the referee and matches the AA published versio

    Prediction of Tail-Off Pressure Peak Anomaly on Small-Scale Rocket Motors

    Get PDF
    Numerical studies intended to predict solid rocket motors anomalies are the major contributors when developing strategies to both limit expensive fire tests and to investigate and understand the physical phenomena from which anomalies can arise. This paper aims to present a mathematical–physical method to evaluate the pressure peak, namely Friedman Curl, occurring at the tail-off phase of small-scale rocket motors. Such phenomenon is linked to the grain solid particles arrangement (i.e., packing effect); indeed, those particles show a tendency to accumulate at a certain distance from the metallic case, implying a local burn rate increment and a combustion chamber pressure rise close to the tail-off phase. Comparisons between experimental and simulated combustion chamber pressure profiles are outlined to prove the effectiveness of the mathematical–physical approach. Simulations were carried out with an internal ballistic simulation tool developed by the authors of this work

    The primordial environment of supermassive black holes (II): deep Y and J band images around the z=6.3 quasar SDSS J1030+0524

    Get PDF
    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large scale structures marked by galaxy over-densities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy over-densities around high-z quasars has returned conflicting results. The field around the z=6.28 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area (25x25 arcmin), Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogues in the Y- and J-band, and matched those with our photometric catalogue in the r, z, i bands presented in Morselli et al. (2014). We used these new infrared data together with H and K and Spitzer/IRAC data to refine our selection of Lyman Break Galaxies (LBGs), extending our selection criteria to galaxies in the range 25.2<zAB<25.7. We selected 21 robust high-z candidates in the J1030 field with photometric redshift around 6 and colors i-z>=1.3. We found a significant asymmetry in the distribution of the high-z galaxies in J1030, supporting the existence of a coherent large-scale structure around the quasar. We compared our results with those of Bowler et al. (2015), who adopted similar LBGs selection criteria, and estimated an over-density of galaxies in the field of delta = 2.4, which is significant at >4 sigma. The over-density value and its significance are higher than those found in Morselli et al. (2014), and we interpret this as evidence of an improved LBG selection.Comment: 13 pages, 8 figures, accepted for publication in A&

    Changes in Macrozoobenthos Community after Aquatic Plant Restoration in the Northern Venice Lagoon (IT)

    Get PDF
    Responses of the macrozoobenthic community to an ecological restoration activity in the northern Venice lagoon were studied, within the scope of the project LIFE SEagrass RESTOration aimed at recreating aquatic phanerogam meadows largely reduced in recent decades. Transplants were successful in almost all project areas. Macrozoobenthos was sampled in eight stations before (2014) and after (2015, 2016, 2017) transplanting activities. An increase in abundance and fluctuations in richness and univariate ecological indices (Shannon’s, Margalef’s, Pielou’s indices) resulted during the years. Comparing non-vegetated and vegetated samples in 2017, every index except Pielou’s increased in the latter. Multivariate analysis (hierarchical cluster analysis, MDS, PERMDISP, SIMPER) grouped samples by localization rather than years, with differences between stations due to the abundance of common species. In 2017, results were also grouped by the presence or absence of aquatic plants, with differences in the abundance of grazer and filter-feeding species. Results of ecological index M-AMBI depicted conditions from moderate to good ecological status (sensu Dir.2000/60/EC) with similar fluctuations, as presented by univariate indices from 2014 to 2017. Responses of the macrozoobenthic community were more evident when comparing vegetated and non-vegetated samples, with the vegetated areas sustaining communities with greater abundance and diversity than non-vegetated samples, thus demonstrating the supporting function of aquatic plants to benthic communities

    Balance between the reliability of classification and sampling effort: A multi-approach for thewater Framework Directive (WFD) ecological status applied to the Venice Lagoon (Italy)

    Get PDF
    The Water Framework Directive (WFD) requires Member States to assess the ecological status of water bodies and provide an estimation of the classification confidence and precision. This study tackles the issue of the uncertainty in the classification, due to the spatial variability within each water body, proposing an analysis of the reliability of classification, using the results of macrophyte WFD monitoring in the Venice Lagoon as case study. The level of classification confidence, assessed for each water body, was also used as reference to optimize the sampling effort for the subsequent monitorings. The ecological status of macrophytes was calculated by the Macrophyte Quality Index at 114 stations located in 11 water bodies. At water body scale, the level of classification confidence ranges from 54% to 100%. After application of the multi-approach (inferential statistics, spatial analyses, and expert judgment), the optimization of the sampling effort resulted in a reduction of the number of stations from 114 to 84. The decrease of sampling effort was validated by assessing the reliability of classification after the optimization process (54-99%) and by spatial interpolation of data (Kernel standard error of 22.75%). The multi-approach proposed in this study could be easily applied to any other water body and biological quality element

    The Mean Star-Forming Properties of QSO Host Galaxies

    Get PDF
    Quasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and SMBHs predict that QSOs are also sites of substantial recent star formation, mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of such models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z~2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous AGNs studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an analysis of important selection effects within spectroscopic QSO samples that influence the interpretation of SFR trends. We find that the mean SFRs of these QSOs are consistent with those of normal massive star-forming galaxies with a fixed scaling between SMBH and galaxy mass at all redshifts. No strong enhancement in SFR is found even among the most rapidly accreting systems, at odds with several co-evolutionary models. Finally, we consider the qualitative effects on mean SFR trends from different assumptions about the star-forming properties of QSO hosts and redshift evolution of the SMBH-galaxy relationship. While limited currently by uncertainties, valuable constraints on AGN-galaxy co-evolution can emerge from our approach.Comment: 10 figures, 1 table; accepted for publication in Astronomy & Astrophysic

    Ionised outflows in z \sim 2.4 quasar host galaxies

    Get PDF
    AGN-driven outflows are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super massive black holes and their host galaxies. This work aims to detect the presence of extended ionised outflows in luminous quasars where we expect the maximum activity both in star formation and in black hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z>2z>2. We analyse a sample of six luminous (L>1047 erg/s{\rm L>10^{47} \ erg/s}) quasars at z2.4z\sim2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at VLT. We perform a kinematic analysis of the [OIII] emission line at λ=5007A˚\lambda = 5007\AA. [OIII] has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km/s and line widths up to 1500 km/s. Using the spectroastrometric method we infer size of the ionised outflows of up to \sim2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows driven by radiation pressure, which depends on the emitted luminosity. We derive mass outflow rates of about 6-700 M_{\odot}/yr for our sample, which are lower than those observed in molecular outflows. Indeed physical properties of ionised outflows show dependences on AGN luminosity which are similar to those of molecular outflows but indicating that the mass of ionised gas is smaller than that of the molecular one. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms.Comment: 13 pages, 11 figures; accepted for publication in A&

    The 500 ks Chandra observation of the z = 6.31 QSO SDSS J1030+0524

    Get PDF
    We present the results from a 500\sim500 ks Chandra observation of the z=6.31z=6.31 QSO SDSS J1030+0524. This is the deepest X-ray observation to date of a z6z\sim6 QSO. The QSO is detected with a total of 125 net counts in the full (0.570.5-7 keV) band and its spectrum can be modeled by a single power-law model with photon index of Γ=1.81±0.18\Gamma = 1.81 \pm 0.18 and full band flux of f=3.95×1015f=3.95\times 10^{-15} erg s1^{-1} cm2^{-2}. When compared with the data obtained by XMM-Newton in 2003, our Chandra observation in 2017 shows a harder (ΔΓ0.6\Delta \Gamma \approx -0.6) spectrum and a 2.5 times fainter flux. Such a variation, in a timespan of 2\sim2 yrs rest-frame, is unexpected for such a luminous QSO powered by a >109M> 10^9 \: M_{\odot} black hole. The observed source hardening and weakening could be related to an intrinsic variation in the accretion rate. However, the limited photon statistics does not allow us to discriminate between an intrinsic luminosity and spectral change, and an absorption event produced by an intervening gas cloud along the line of sight. We also report the discovery of diffuse X-ray emission that extends for 30"x20" southward the QSO with a signal-to-noise ratio of \sim6, hardness ratio of HR=0.030.25+0.20HR=0.03_{-0.25}^{+0.20}, and soft band flux of f0.52keV=1.10.3+0.3×1015f_{0.5-2 \: keV}= 1.1_{-0.3}^{+0.3} \times 10^{-15} erg s1^{-1} cm2^{-2}, that is not associated to a group or cluster of galaxies. We discuss two possible explanations for the extended emission, which may be either associated with the radio lobe of a nearby, foreground radio galaxy (at z12z \approx 1-2), or ascribed to the feedback from the QSO itself acting on its surrounding environment, as proposed by simulations of early black hole formation.Comment: 13 pages, 9 figures, A&A accepte

    Psychopharmacological Treatments for Mental Disorders in Patients with Neuromuscular Diseases: A Scoping Review

    Get PDF
    Mental disorders are observed in neuromuscular diseases, especially now that patients are living longer. Psychiatric symptoms may be severe and psychopharmacological treatments may be required. However, very little is known about pharmacotherapy in these conditions. We aimed to summarize the current knowledge on the use of psychopharmacological treatments for mental disorders in patients living with a neuromuscular disease. A scoping review was performed using the methodology of the Joanna Briggs Institute. Four databases were searched from January 2000 to July 2021. Articles were screened based on titles and abstracts. Full-text papers published in peer-reviewed journals in English were selected. Twenty-six articles met eligibility criteria, all being case reports/series focusing on the psychopharmacological control of psychiatric symptoms for the following conditions: myasthenia gravis (n = 11), Duchenne (n = 5) and Becker (n = 3) muscular dystrophy, mitochondrial disorders (n = 3), glycogen storage disease (n = 1), myotonic dystrophy (n = 1), hyperkalemic periodic paralysis (n = 1), and congenital myasthenic syndrome (n = 1). None of the articles provided details on the decision-making process to choose a specific drug/regimen or on follow-up strategies to monitor safety and efficacy. Larger studies showing real-world data would be required to guide consensus-based recommendations, thus improving current standards of care and, ultimately, the quality of life of patients and their families

    Hubble imaging of the ionizing radiation from a star-forming galaxy at z=3.2 with fesc>50%

    Get PDF
    Star-forming galaxies are considered to be the leading candidate sources that dominate the cosmic reionization at z>7, and the search for analogs at moderate redshift showing Lyman continuum (LyC) leakage is currently a active line of research. We have observed a star-forming galaxy at z=3.2 with Hubble/WFC3 in the F336W filter, corresponding to the 730-890A rest-frame, and detect LyC emission. This galaxy is very compact and also has large Oxygen ratio [OIII]5007/[OII]3727 (>=10). No nuclear activity is revealed from optical/near-infrared spectroscopy and deep multi-band photometry (including the 6Ms X-ray, Chandra). The measured escape fraction of ionizing radiation spans the range 50-100\%, depending on the IGM attenuation. The LyC emission is detected at S/N=10 with m(F336W)=27.57+/-0.11 and it is spatially unresolved, with effective radius R_e<200pc. Predictions from photoionization and radiative transfer models are in line with the properties reported here, indicating that stellar winds and supernova explosions in a nucleated star-forming region can blow cavities generating density-bounded conditions compatible with optically thin media. Irrespective to the nature of the ionizing radiation, spectral signatures of these sources over the entire electromagnetic spectrum are of central importance for their identification during the epoch of reionization, when the LyC is unobservable. Intriguingly, the Spitzer/IRAC photometric signature of intense rest-frame optical emissions ([OIII]+Hbeta) observed recently at z~7.5-8.5 is similar to what is observed in this galaxy. Only the James Webb Space Telescope will measure optical line ratios at z>7 allowing a direct comparison with lower redshift LyC emitters, as reported here.Comment: 6 pages, 5 figures, ApJ submitted (comments welcome
    corecore