8,477 research outputs found

    Power-law tails in probability density functions of molecular cloud column density

    Get PDF
    Power-law tails are often seen in probability density functions (PDFs) of molecular cloud column densities, and have been attributed to the effect of gravity. We show that extinction PDFs of a sample of five molecular clouds obtained at a few tenths of a parsec resolution, probing extinctions up to AV_{{\mathrm{V}}} ∌\sim 10 magnitudes, are very well described by lognormal functions provided that the field selection is tightly constrained to the cold, molecular zone and that noise and foreground contamination are appropriately accounted for. In general, field selections that incorporate warm, diffuse material in addition to the cold, molecular material will display apparent core+tail PDFs. The apparent tail, however, is best understood as the high extinction part of a lognormal PDF arising from the cold, molecular part of the cloud. We also describe the effects of noise and foreground/background contamination on the PDF structure, and show that these can, if not appropriately accounted for, induce spurious tails or amplify any that are truly present.Comment: Accepted for publication in MNRA

    A method for reconstructing the PDF of a 3D turbulent density field from 2D observations

    Full text link
    We introduce a method for calculating the probability density function (PDF) of a turbulent density field in three dimensions using only information contained in the projected two-dimensional column density field. We test the method by applying it to numerical simulations of hydrodynamic and magnetohydrodynamic turbulence in molecular clouds. To a good approximation, the PDF of log(normalised column density) is a compressed, shifted version of the PDF of log(normalised density). The degree of compression can be determined observationally from the column density power spectrum, under the assumption of statistical isotropy of the turbulence.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter

    Infinitely divisible nonnegative matrices, MM-matrices, and the embedding problem for finite state stationary Markov Chains

    Full text link
    This paper explicitly details the relation between MM-matrices, nonnegative roots of nonnegative matrices, and the embedding problem for finite-state stationary Markov chains. The set of nonsingular nonnegative matrices with arbitrary nonnegative roots is shown to be the closure of the set of matrices with matrix roots in IM\mathcal{IM}. The methods presented here employ nothing beyond basic matrix analysis, however it answers a question regarding MM-matrices posed over 30 years ago and as an application, a new characterization of the set of all embeddable stochastic matrices is obtained as a corollary

    An Observational Method to Measure the Relative Fractions of Solenoidal and Compressible Modes in Interstellar Clouds

    Full text link
    We introduce a new method for observationally estimating the fraction of momentum density (ρv{\rho}{\mathbf{v}}) power contained in solenoidal modes (for which ∇⋅ρv=0\nabla \cdot {\rho}{\mathbf{v}} = 0) in molecular clouds. The method is successfully tested with numerical simulations of supersonic turbulence that produce the full range of possible solenoidal/compressible fractions. At present the method assumes statistical isotropy, and does not account for anisotropies caused by (e.g.) magnetic fields. We also introduce a framework for statistically describing density--velocity correlations in turbulent clouds.Comment: 20 pages, 13 figures, accepted for publication in MNRA

    Explicit Solution and Fine Asymptotics for a Critical Growth-Fragmentation Equation

    Get PDF
    We give here an explicit formula for the following critical case of the growth-fragmentation equation ∂∂tu(t,x)+∂∂x(gxu(t,x))+bu(t,x)=bα2u(t,αx),u(0,x)=u_0(x),\frac{\partial}{\partial t} u(t, x) + \frac{\partial}{\partial x} (gxu(t, x)) + bu(t, x) = b\alpha^2 u(t, \alpha x), \qquad u(0, x) = u\_0 (x), for some constants g>0g > 0, b>0b > 0 and α>1\alpha > 1 - the case α=2\alpha = 2 being the emblematic binary fission case. We discuss the links between this formula and the asymptotic ones previously obtained in (Doumic, Escobedo, Kin. Rel. Mod., 2016), and use them to clarify how periodicity may appear asymptotically

    The Density Variance Mach Number Relation in the Taurus Molecular Cloud

    Full text link
    Supersonic turbulence in molecular clouds is a key agent in generating density enhancements that may subsequently go on to form stars. The stronger the turbulence - the higher the Mach number - the more extreme the density fluctuations are expected to be. Numerical models predict an increase in density variance with rms Mach number of the form: sigma^{2}_{rho/rho_{0}} = b^{2}M^{2}, where b is a numerically-estimated parameter, and this prediction forms the basis of a large number of analytic models of star formation. We provide an estimate of the parameter b from 13CO J=1-0 spectral line imaging observations and extinction mapping of the Taurus molecular cloud, using a recently developed technique that needs information contained solely in the projected column density field to calculate sigma^{2}_{rho/rho_{0}}. We find b ~ 0.48, which is consistent with typical numerical estimates, and is characteristic of turbulent driving that includes a mixture of solenoidal and compressive modes. More conservatively, we constrain b to lie in the range 0.3-0.8, depending on the influence of sub-resolution structure and the role of diffuse atomic material in the column density budget. We also report a break in the Taurus column density power spectrum at a scale of ~1pc, and find that the break is associated with anisotropy in the power spectrum. The break is observed in both 13CO and dust extinction power spectra, which, remarkably, are effectively identical despite detailed spatial differences between the 13CO and dust extinction maps. [ abridged ]Comment: 8 pages, 9 figures. Accepted for publication in A&
    • 

    corecore