1,562 research outputs found

    Resonances in ultracold dipolar atomic and molecular gases

    Get PDF
    A previously developed approach for the numerical treatment of two particles that are confined in a finite optical-lattice potential and interact via an arbitrary isotropic interaction potential has been extended to incorporate an additional anisotropic dipole–dipole interaction (DDI). The interplay of a model but realistic short-range Born–Oppenheimer potential and the DDI for two confined particles is investigated. A variation of the strength of the DDI leads to diverse resonance phenomena. In a harmonic confinement potential some resonances show similarities to s-wave scattering resonances while in an anharmonic trapping potential like the one of an optical lattice additional inelastic confinement-induced dipolar resonances occur. The latter are due to a coupling of the relative and center-of-mass motion caused by the anharmonicity of the external confinement.Peer Reviewe

    Shortcut to adiabaticity in spinor condensates

    Full text link
    We devise a method to shortcut the adiabatic evolution of a spin-1 Bose gas with an external magnetic field as the control parameter. An initial many-body state with almost all bosons populating the Zeeman sublevel m=0m=0, is evolved to a final state very close to a macroscopic spin-singlet condensate, a fragmented state with three macroscopically occupied Zeeman states. The shortcut protocol, obtained by an approximate mapping to a harmonic oscillator Hamiltonian, is compared to linear and exponential variations of the control parameter. We find a dramatic speedup of the dynamics when using the shortcut protocol.Comment: 10 pages, 7 figure

    Análisis comparativo de los vehículos de hidrógeno y los vehículos eléctricos

    Get PDF
    El actual modelo energéticoestá basado, principalmente, en energías fósiles y, por tanto, está basado en un recurso finito. Dicho modelo requiere de una transición hacia un modelo energético con predominancia de las energías renovables Una de las industrias más consumidora de esos combustibles fósiles es la de la automoción y el transporte, es por ello por lo que los acuerdos globales de transición energética ponen especial atención en esta industria. El objetivo de este trabajo de fin de grado es realizar un análisis de las tecnologías más prometedoras en el campo de la automoción: el hidrógeno y la electricidad. Por un lado, los vehículos de batería (BEV) hacen referencia al Modelo Eléctrico. Por otro lado, los vehículos de pilas de combustible de hidrógeno (FCEV) hacen referencia al Modelo de Hidrógeno. El trabajo se ha estructurado, en primer lugar, realizando una breve descripción de ambas tecnologías, así como de los elementos que las conforman y sus futuros desarrollos. Además, se realiza una evaluación del mercado de cada tipo vehículo. En segundo lugar, se elabora un análisis comparativo de las principales características de ambas tecnologías. Y en tercer y útlimo lugar, se formulan las correspondientes conclusiones y el trabajo concluye con líneas de trabajos futurosThe current energy model based mainly on fossil fuels, and therefore on a finite resource, requires a transition towards an energy model with a predominance of renewable energies. One of the industries that consumes the most fossil fuels is the automotive and transport industry, which is why the global energy transition agreements pay special attention to this industry. The aim of this thesis is to analyse the most promising technologies in the automotive field: hydrogen and electricity. On the one hand, battery-powered vehicles (BEV) refer to the Electric Model. On the other hand, hydrogen fuel cell vehicles (FCEV) refer to the Hydrogen Model, firstly with a brief description of both technologies, their constituent elements and future developments. In addition, an assessment of the market for each type of vehicle is made. Next, a comparative analysis of the main characteristics of both vehicle models is carried out. Finally, the corresponding conclusions are formulated to conclude with possible lines of future workObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.2 - Per a 2030, proporcionar accés a sistemes de transport segurs, assequibles, accessi­bles i sostenibles per a totes les persones, i millorar la seguretat viària, en particular mitjan­çant l’ampliació del transport públic, amb especial atenció a les necessitats de les persones en situació vulnerable, dones, nenes, nens, persones amb discapacitat i persones gransObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.b - Per a 2030, ampliar la infraestructura i millorar la tecnologia per tal d’oferir serveis d’energia moderns i sos­tenibles per a tots els països en desenvolupament, en particular els països menys avançats, els petits estats insulars en desenvolupament i els països en desenvolupament sense litoral, d’acord amb els programes de suport respectiu

    Environmental impacts of food consumption in Europe

    Get PDF
    AbstractFood consumption is amongst the main drivers of environmental impacts. On one hand, there is the need to fulfil a fundamental human need for nutrition, and on the other hand this poses critical threats to the environment. In order to assess the environmental impact of food consumption, a lifecycle assessment (LCA)-based approach has been applied to a basket of products, selected as being representative of EU consumption. A basket of food products was identified as representative of the average food and beverage consumption in Europe, reflecting the relative importance of the products in terms of mass and economic value. The products in the basket are: pork, beef, poultry, milk, cheese, butter, bread, sugar, sunflower oil, olive oil, potatoes, oranges, apples, mineral water, roasted coffee, beer and pre-prepared meals. For each product in the basket, a highly disaggregated inventory model was developed based on a modular approach, and built using statistical data. The environmental impact of the average food consumption of European citizens was assessed using the International Reference Life Cycle Data System (ILCD) methodology. The overall results indicate that, for most of the impact categories, the consumed foods with the highest environmental burden are meat products (beef, pork and poultry) and dairy products (cheese, milk and butter). The agricultural phase is the lifecycle stage that has the highest impact of all the foods in the basket, due to the contribution of agronomic and zootechnical activities. Food processing and logistics are the next most important phases in terms of environmental impacts, due to their energy intensity and the related emissions to the atmosphere that occur through the production of heat, steam and electricity and during transport. Regarding the end-of-life phase, human excretion and wastewater treatments pose environmental burdens related to eutrophying substances whose environmental impacts are greater than those of the agriculture, transports and processing phases. Moreover, food losses which occur throughout the whole lifecycle, in terms of agricultural/industrial and domestic food waste, have also to be taken into consideration, since they can amount to up to 60% of the initial weight of the food products. The results of the study go beyond the mere assessment of the potential impacts associated with food consumption, as the overall approach may serve as a baseline for testing eco-innovation scenarios for impact reduction as well as for setting targets

    The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges

    Get PDF
    Abstract Life cycle thinking is increasingly seen as a key concept for ensuring a transition towards more sustainable production and consumption patterns. As food production systems and consumption patterns are among the leading drivers of impacts on the environment, it is important to assess and improve food-related supply chains as much as possible. Over the years, life cycle assessment has been used extensively to assess agricultural systems and food processing and manufacturing activities, and compare alternatives "from field to fork" and through to food waste management. Notwithstanding the efforts, several methodological aspects of life cycle assessment still need further improvement in order to ensure adequate and robust support for decision making in both business and policy development contexts. This paper discusses the challenges for life cycle assessment arising from the complexity of food systems, and recommends research priorities for both scientific development and improvements in practical implementation. In summary, the intrinsic variability of food production systems requires dedicated modelling approaches, including addressing issues related to: the distinction between technosphere and ecosphere; the most appropriate functional unit; the multi-functionality of biological systems; and the modelling of the emissions and how this links with life cycle impact assessment. Also, data availability and interpretation of the results are two issues requiring further attention, including how to account for consumer behaviour

    In quest of reducing the environmental impacts of food production and consumption

    Get PDF
    AbstractFood supply chains are increasingly associated with environmental and socio-economic impacts. An increasing global population, an evolution in consumers' needs, and changes in consumption models pose serious challenges to the overall sustainability of food production and consumption. Life cycle thinking (LCT) and assessment (LCA) are key elements in identifying more sustainable solutions for global food challenges. In defining solutions to major global challenges, it is fundamentally important to avoid burden shifting amongst supply chain stages and amongst typologies of impacts, and LCA should, therefore, be regarded as a reference method for the assessment of agri-food supply chains. Hence, this special volume has been prepared to present the role of life cycle thinking and life cycle assessment in: i) the identification of hotspots of impacts along food supply chains with a focus on major global challenges; ii) food supply chain optimisation (e.g. productivity increase, food loss reduction, etc.) that delivers sustainable solutions; and iii) assessment of future scenarios arising from both technological improvements and behavioural changes, and under different environmental conditions (e.g. climate change). This special volume consists of a collection of papers from a conference organized within the last Universal Exposition (EXPO2015) "LCA for Feeding the planet and energy for life" in Milan (Italy) in 2015 as well as other contributions that were submitted in the year after the conference that addressed the same key challenges presented at the conference. The papers in the special volume address some of the key challenges for optimizing food-related supply chains by using LCA as a reference method for environmental impact assessment. Beyond specific methodological improvements to better tailor LCA studies to food systems, there is a clear need for the LCA community to "think outside the box", exploring complementarity with other methods and domains. The concepts and the case studies presented in this special volume demonstrate how cross-fertilization among difference science domains (such as environmental, technological, social and economic ones) may be key elements of a sustainable "today and tomorrow" for feeding the planet

    The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges

    Get PDF
    Life cycle thinking is increasingly seen as a key concept for ensuring a transition towards more sustainable production and consumption patterns. As food production systems and consumption patterns are among the leading drivers of impacts on the environment, it is important to assess and improve foodrelated supply chains as much as possible. Over the years, life cycle assessment has been used extensively to assess agricultural systems and food processing and manufacturing activities, and compare alternatives “from field to fork” and through to food waste management. Notwithstanding the efforts, several methodological aspects of life cycle assessment still need further improvement in order to ensure adequate and robust support for decision making in both business and policy development contexts. This paper discusses the challenges for life cycle assessment arising from the complexity of food systems, and recommends research priorities for both scientific development and improvements in practical implementation. In summary, the intrinsic variability of food production systems requires dedicated modelling approaches, including addressing issues related to: the distinction between technosphere and ecosphere; the most appropriate functional unit; the multi-functionality of biological systems; and the modelling of the emissions and how this links with life cycle impact assessment. Also, data availability and interpretation of the results are two issues requiring further attention, including how to account for consumer behaviour.info:eu-repo/semantics/publishedVersio

    In quest of reducing the environmental impacts of food production and consumption

    Get PDF
    Food supply chains are increasingly associated with environmental and socio-economic impacts. An increasing global population, an evolution in consumers' needs, and changes in consumption models pose serious challenges to the overall sustainability of food production and consumption. Life cycle thinking (LCT) and assessment (LCA) are key elements in identifying more sustainable solutions for global food challenges. In defining solutions to major global challenges, it is fundamentally important to avoid burden shifting amongst supply chain stages and amongst typologies of impacts, and LCA should, therefore, be regarded as a reference method for the assessment of agri-food supply chains. Hence, this special volume has been prepared to present the role of life cycle thinking and life cycle assessment in: i) the identification of hotspots of impacts along food supply chains with a focus on major global challenges; ii) food supply chain optimisation (e.g. productivity increase, food loss reduction, etc.) that delivers sustainable solutions; and iii) assessment of future scenarios arising from both technological improvements and behavioural changes, and under different environmental conditions (e.g. climate change). This special volume consists of a collection of papers from a conference organized within the last Universal Exposition (EXPO2015) “LCA for Feeding the planet and energy for life” in Milan (Italy) in 2015 as well as other contributions that were submitted in the year after the conference that addressed the same key challenges presented at the conference. The papers in the special volume address some of the key challenges for optimizing food-related supply chains by using LCA as a reference method for environmental impact assessment. Beyond specific methodological improvements to better tailor LCA studies to food systems, there is a clear need for the LCA community to “think outside the box”, exploring complementarity with other methods and domains. The concepts and the case studies presented in this special volume demonstrate how cross-fertilization among difference science domains (such as envi- ronmental, technological, social and economic ones) may be key elements of a sustainable “today and tomorrow” for feeding the planet.info:eu-repo/semantics/publishedVersio
    corecore