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Abstract
Apreviously developed approach for the numerical treatment of two particles that are confined in a
finite optical-lattice potential and interact via an arbitrary isotropic interaction potential has been
extended to incorporate an additional anisotropic dipole–dipole interaction (DDI). The interplay of a
model but realistic short-range Born–Oppenheimer potential and theDDI for two confined particles
is investigated. A variation of the strength of theDDI leads to diverse resonance phenomena. In a
harmonic confinement potential some resonances show similarities to s-wave scattering resonances
while in an anharmonic trapping potential like the one of an optical lattice additional inelastic
confinement-induced dipolar resonances occur. The latter are due to a coupling of the relative and
center-of-massmotion caused by the anharmonicity of the external confinement.

1. Introduction

In recent years significant experimental progress has lead to sophisticated cooling and trapping techniques of
polarmolecules and of atomic species having a large dipolemoment [1–4]. A very promising approach for
achieving ultracold polarmolecules is the formation of weakly-boundmoleculesmaking use of amagnetic
Feshbach resonance and a subsequent transfer to the ground state using the STIRAP (stimulated Raman
adiabatic passage) scheme [5]. Based on thismethod gases ofmotionally ultracold RbK [6] or LiCs [7]molecules
in their rovibrational ground states were achieved. This fascinating progress paved theway towards degenerate
quantumgases with predominant dipole–dipole interactions (DDI). In the case ofmagnetic dipoles the Bose–
Einstein condensation (BEC) of Cr52 , an atomwith a largemagneticmoment of 6 Bμ , was already achieved in
2004 [8]. Although in chromium theDDI can be enhanced relative to the atomic short-range interaction by
decreasing the strength of the latter using a Feshbach resonance [9], theDDI is typically still smaller or atmost of
the samemagnitude as the van-der-Waals forces. In order to create an atomic gaswith aDDI larger than the van-
der-Waals forces, a BECof dysprosium (10 Bμ ) [10] and one of erbium (12 Bμ ) [11]were realised.

The properties of theDDI are completely different from those of isotropic short-range interactions, e.g., the
ones between two atomswith noDDI. TheDDI has a long-range character as it decays as r1 3, where r is the
inter-particle distance, and it is anisotropicwhichmeans that even the sign of the interaction depends on the
angle θ between the polarization direction and the relative position of the particles.

A full and quantitative understanding of the behaviour of two particles in an external trapping potential is a
prerequisite for themanipulation and control of ultracold two-body systems that have been proposed for
possible quantum-computer realizations [12, 13]. This knowledge about themicroscopic two-body physics is
also important for the understanding of the rich physics of the correspondingmany-body systems. For example,
more accurate Bose–Hubbard parameters for describing an ultracold quantumgas in an optical lattice have been
extracted from two-particle calculations in the absence [14] or the presence ofDDI [15]. Furthermore, inelastic
confinement-induced two-body resonances [16, 17]were found to have causedmassive atom losses also in
quantumgases withmany particles [18]. Evidently, the possibility to vary the interaction strengthwithin
ultracold atomic quantum gaseswith the aid of two-bodymagnetic Feshbach resonances has been of paramount
importance for thewhole research field.
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Different theoretical approaches to describe dipolar systems have been reported earlier. For example, to
describe an ultracold dipolar gas trapped in a harmonic confinement, in [19, 20] a pseudo potential as a function
of the dipolemoment is proposed for the short-range interaction, while for the long-range potential the
anisotropicDDI is adopted. Amore realistic interatomic interaction, a Lennard-Jones-typemodel potential, is
considered in [21, 22]. The approach described in [23] uses a hard-sphere potential for the short-range part of
the interaction potential between two dipolar particles in free space. In these approaches s-wave like scattering
resonances [24] induced by the dipolar interactions were observed. Following the prediction of elastic
confinement-induced resonances in quasi-1D confinement [25, 26], such resonances for dipolar systemswere
considered in [22, 27, 28]. In [21] also elastic confinement-induced resonances in quasi-2D confinement were
investigated.

The approach described in the present work extends themethod introduced in [29] which allows for the use
of a realistic, numerically given Born–Oppenheimer potential curve for the short-range part of the interaction
potential by adding an additional DDI. In contrast to the use of a δ pseudo-potential that supports a single bound
state, the use of a realistic short-range potential supports oftenmany deeply bound states. Furthermore, in
contrast to numerous previous works, see e.g. [21, 27, 30–33], in our approach the external trap potential is
chosen as afinite optical-lattice potential, i.e., a truncated Taylor series for a sin2 or cos2 optical-lattice potential.
While a truncation at the second order yields a harmonic trapping potential, anharmonicmulti-well potentials
can be achieved, if the truncation is performed at higher orders. In this work the numerical implementation of
the approach isfirst verified in the case of a harmonic trap. The complete energy spectrum including the
different types of resonances is discussed, providing a consistent view as it is based on the same numerical
approach and adopting the same type of potentials. Then it is demonstrated that in an anharmonic trapping
potential the coupling of center-of-mass and relativemotion leads to the occurrence of inelastic resonances at
which bound states with some center-of-mass excitation couple to states of unbound dipoles. Thismechanism is
analogous to the inelastic confinement-induced resonances (ICIR) described in [16, 17, 34] for ultracold atomic
systemswithoutDDI.

This article is organized as follows. First, theHamiltonian and the numericalmethod are introduced in
sections 2 and 3, respectively. In section 4 the influence of the dipolar interaction is investigated for two different
trapping potentials. The results for an isotropic harmonic trap are shown in section 4.1, the ones for an
anisotropic sextic potential with coupling between center-of-mass and relativemotions in section 4.2. A
conclusion is provided in section 5.

2. Two-body problemof trapped dipolar particles

A systemof two dipolar particles withmassesm1,m2 and the absolute coordinates r1, r2 trapped in an optical
lattice is described by theHamiltonian

H T T V V Vr r r r r rˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ), (1)1 1 2 2 1 1 2 2 int 1 2= + + + + −

whereT rˆ ( )i i is the kinetic energy operator
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which can be experimentally obtained by the superposition of counter-propagating laser beams [35], where the
parametersV j0, and kj are the potential depth and the components of thewavevector k 2j jπ λ= , respectively.

Relative (rm) and center-of-mass (CM)motion coordinates r r r1 2= − , R r r1 1 2 2μ μ= + , respectively, are
introduced to transform the two-bodyHamiltonian in equation (1) into

H h h Wr R r R r Rˆ ( , ) ˆ ( ) ˆ ( ) ˆ ( , ), (3)rm CM= + +

where ĥrm and ĥCM are the separable parts of theHamiltonian in relative and center-of-mass coordinates,

respectively, and
m

m mi
i

1 2

μ =
+

. The coupling termW r Rˆ ( , )describes the non-separable parts of the

Hamiltonian that originate from the non-separability of the optical-lattice potential in relative and center-of-
mass coordinates. The center-of-massmotion part

1
Note, also cos2 lattice potentials are implemented in the code. For simplification of the notation, only the sin2 lattices are explicitly

considered here.

2

New J. Phys. 17 (2015) 065002 B Schulz et al



h
M

VR
P

Rˆ ( )
ˆ

2
( ) (4)CM

2

CM= +

of theHamiltonian in equation (3) and the relative-motion part
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contain the respectivemomentumoperators p̂ and P̂ in relative and center-of-mass coordinates, i.e.
p p pˆ ˆ ˆ1 2= − and P p pˆ ˆ ˆ1 1 2 2μ μ= + .While the implementation of the algorithm also allows for distinguishable
particles, in the present work only the special case of identical particles is consideredwhich is in accordance with
many experiments [1, 2, 10, 11]. In this case, the separable parts of the optical-lattice potential,
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keep a simple form containing the sin2 terms.
The interaction potentialV V rr( ) ( , )int int θ= in equation (5) describes the interaction of two dipolar

particles. In the present approach, the interaction potential consists of an isotropic short-range partVsh and of
the long-rangeDDIVdd for aligned dipoles along the z axis,

V r V r V r V r
C
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V r

C Y
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where C d ddd 1 2 0ϵ= (C ˜ ˜dd 0 1 2μ μ μ= ) is the coupling constant for the electric dipolemoments d1 and d2
(magnetic dipolemoments 1̃μ and ˜2μ ) where 0ϵ is the vacuumpermittivity ( 0μ the vacuumpermeability).

Furthermore, in equation (9) the spherical harmonic Y ( ) 5 (16 ) (3 cos ( ) 1)2
0 2θ π θ= − is introduced. The

alignment of the electric ormagnetic dipoles can be obtainedwith static electric ormagnetic fields, respectively.
Additionally, as the applied electric field increases, the dipolemoment d continuously increases from zero to the
full permanent dipolemoment in the case of electric dipoles.

A rather unique feature of the present approach is that the short-range interaction potentialVsh can be
chosen arbitrarily as some analytical expression, somenumerically given potential curve, or amixture of both.
The only constraint is its isotropy. Choosing a realistic atomic ormolecular interaction potential provides the
unique opportunity to investigate in a realistic fashion especially the regimewhere both, the isotropic short-
range interaction aswell as theDDI, have a comparable influence. Such a study is not possible withmodel
potentials (such as, e.g., zero-range potentials [32, 33] or hard spheres [36]) that do not realistically reproduce
the behavior of the tail of the short-range potential. Amore realistic, analytic Lennard-Jones-typemodel
potential was used in [21, 22] to investigate the effect of theDDI on the trap states and elastic collisions in a
harmonic trap inwhich relative and center-of-massmotions separate.

The anisotropy of theDDI is described by the spherical harmonic Y ( )l
m

2
0 θ=

= , see equation (9). TheDDI is
repulsive for dipoles in the side-by-side configuration and attractive in the head-to-tail configuration, see
figure 1. Therefore, with increasing dipolemoment the overall interaction potential changes dramatically from
the generic isotropic short-range interaction to an anisotropic long-rangeDDI. In addition, the shape of the
long-range part of thewavefunction is strongly influenced by the trap and a possible centrifugal barrier.

3.Method

The full treatment of two particles interacting by an arbitrary isotropic interaction potential and confined in a
finite optical lattice has been introduced in [29]. In the present work this approach has been extended for
treating particles that interact with an additional anisotropicDDI. Details of the original approachwith isotropic
interactions can be found in [29].Here, this approach is briefly described and the extension for the inclusion of
theDDI is presented.

3

New J. Phys. 17 (2015) 065002 B Schulz et al



3.1. Exact diagonalization
For a given trapping potential the Schrödinger equation

Ĥ (10)i i iΨ Ψ=

of theHamiltonian of equation (3) in relative and center-of-mass coordinates is solved by expandingΨ in terms
of configurationsΦ,

R r R r( , ) ( , ). (11)i

k

ik k∑Ψ Φ=

The configurations

R r r R( , ) ( ) ( ) (12)k i jk k
Φ φ ψ=

are products of the eigenfunctionsφ andψ that are the solutions of the eigenvalue equations

h hˆ , ˆ . (13)i i i j j jrm
rm

CM
CMφ ϵ φ ψ ϵ ψ= =

of theHamiltonians for the relative and center-of-massmotions, respectively. Once the eigenvectors φ∣ 〉 and ψ∣ 〉
are obtained from the solution of the correspondingmatrix eigenvalue problem (that is a generalized one, if
non-orthogonal basis functions are used as in the present case) with thematrices

h h sˆ , , (14)a a a a a a a a,
rm

rm ,
rmφ φ φ φ= =′ ′ ′ ′

h h sˆ , (15)b b b b b b b b,
CM

CM ,
CMψ ψ ψ ψ= =′ ′ ′ ′

with the short-hand notation l ma , ,α≡ and L Mb , ,β≡ , the ordinarymatrix eigenvalue problem

EHC C , (16)ii i=

for the configurations remains, where thematrix H is given by

H Ĥ . (17)k k k k, Φ Φ=′ ′

In order to extend the approach in [29] to dipolar interactions,matrix elements of the type Va addφ φ ′ have

to be calculated and added to the relative-motion part of theHamiltonian.

3.2. Basis set
The numericalmethod [29] that is extended in this work uses spherical harmonics as basis functions for the
angular part of the basis functions. For the radial part of the basis setB-spline functions B r( )α of order k are used.
The advantage of usingB splines is their compactness in space that leads to sparse overlap andHamiltonian
matrices. Another relevant property is the continuity of their derivatives up to order k 1− .

As a result, the basis functions

B r

r
Yr( )

( )
( , ), (18)l m l

m
, ,ϕ θ φ=α

α

Figure 1.Two particles interacting via a dipole–dipole interaction (DDI): (a) non-polarized case; (b) with polarization along the z axis;
(c) two polarized dipoles in the head-to-tail configuration attracting each other (black arrows); (d) two polarized dipoles in the side-
by-side configuration repelling each other (black arrows).
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are used to expand the eigenfunctions

c (19)i

N

l

N

m l

l

i lm l m
1 0

; , ,

r l

∑∑ ∑φ ϕ=
α

α α
= = =−

for the relativemotionwith the expansion coefficients ci lm,α . The basis sets are characterized by the upper limits
Nl of angularmomentum in the spherical-harmonics expansion and the numberNr ofB splines used in the
expansion in equation (19). The same type of basis functions as in equation (18) is used for solving for the
center-of-massmotion functionsψ.

The computational effort can be drastically reduced by exploiting symmetry properties. TheHamiltonian of
two atoms interacting via the interaction potentialVint that are trapped in a sin2-like or cos2-like potential
oriented along three orthogonal directions is invariant under the symmetry operations of the orthorhombic
point group D2h, that are the identity, the inversion, three two-fold rotations by an angle π, and threemirror
operations at theCartesian planes, see [29] for details.

TheDDI can bewritten as

V x y z
C r z

r
( , , )

4

3
, (20)dd

dd
2 2

5π
= −

with r x y z2 2 2= + + which is also invariant under the elements of D2h, since only quadratic orders of x, y,
and z appear. Therefore, the totalHamiltonian equation (1) remains invariant under the operations in the D2h

symmetry group.
The introduction of symmetry-adapted basis functions allows to treat each of the eight irreducible

representations of D2h (Ag, B g1 , B g2 , B g3 ,Au, B u1 , B u1 , B u1 ) independently. This leads to a decomposition of the
Hamiltonianmatrix to a sub-block diagonal formwhich reduces the size of thematrices that need to be
diagonalized by approximately a factor of 642. For a derivation of the symmetry-adapted basis functions see [29].
They are a linear combination of non-adapted ones.Hence, for simplicity (butwithout loss of generality) we
continue the description of themethod using the non-symmetry-adapted basis functions iϕ , while the
numerical implementation uses, of course, the symmetry-adapted ones. In this work only states withAg

symmetry are consideredwhich are evenwith respect to all symmetry operations of the D2h point group.
The relative-motionmatrix elements that need to be calculated to extend the existing algorithm toward the

DDI are given by

V
C
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In equation (21) the dimensionless quantity r ahoξ = with the harmonic-oscillator length aho μω
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introduced. Furthermore, the dipole-length a
C

4
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characterizes the range of theDDI. Expressing theDDI

via the spherical harmonic Y2
0 leads to thematrix elements
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between spherical harmonics and theWigner- J3 symbols, it is evident that the dipole–dipole coupling elements
in equation (23) vanish, except if the following three conditions are fulfilled simultaneously:

(i) the sumof the l quantumnumbers is even, i.e., l l n2 2′ + + = with n ∈ ,

(ii) l l l l2∣ ′ − ∣ ⩽ ⩽ ′ + , which refers to the triangular inequality, and

(iii) the sum of the m quantum numbers needs to be zero, i.e., m m 0− ′ + = . From the third condition it
follows thatm remains a good quantumnumber, i.e. L H[ ˆ , ˆ ] 0z = . The product ofWigner- J3 symbols in
equation (23) can be calculated in an extremely accurate and efficient way.

Clearly, theDDI adds additional numerical demands to the problem, since already at the level of solving the
Schrödinger equation of the relative-motionHamiltonian ĥrm a coupling of all even or all odd l quantum

2
In fact, often not all symmetries have to be considered. For example, for identical bosons (fermions) only the gerade (ungerade) ones occur.

This leads to a further reduction of the numerical efforts.
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numbers is introduced. This increases the number of non-zeromatrix elements in comparison to the case
withoutDDI significantly.

4. Results

In this sectionwe present results of the solution of the Schrödinger equationwith theHamiltonian of
equation (3) for different trapping potentials.

For the specific trapping potential, themass of Li7 is used for themasses of the dipolar particlesm1 andm2.
Additionally, the polarizability of the dipolar particles α =200 a.u. is chosen. Furthermore, the laser parameters,
thewave length λ =1000 nmand the intensity I 1000 W cm 2= − , which characterize the trapping potential, are
used3. The resulting trapping frequency is 152.2 kHzω = (for x, y, and z direction in the case of an isotropic
trap)which corresponds to the harmonic-oscillator length a a2598ho 0= .

As a generic example for a realistic short-range interaction potential, in the present study, the one of two Li
atoms in their lowest triplet state a 3

uΣ + [37] is chosenwhich is shown in figure 2. This interaction potential of
lithium is numerically not too demanding since it provides a smaller number of bound states than, e.g., the one
of Cs, Cr,Dy, or Er, and hence, a smaller number ofB splines yields converged results.

In the ultracold regime, the isotropic short-range interaction can be parametrized by the s-wave
scattering length asc which is determined by the energy of the most weakly bound state. In order to
simulate, e.g., the variation of the scattering length in the vicinity of a magnetic Feshbach resonance or a
different system of particles, the approach described in [38] is used where a small modification of the inner
wall of the potential varies the position of the last bound state and hence the s-wave scattering length in
the absence of the DDI.

However, it is important to note that the concept of the s-wave scattering length breaks down for a
non-zero dipole moment. First, a partial-wave expansion does not decouple the wavefunction with respect
to the angular momentum quantum number l, since the DDI couples all even (odd) l quantum numbers.
Second, the r1 3 tail of the DDI leads besides the usual linear term also to a logarithmic term in the
asymptotic part of the wavefunction [27]. This logarithmic behaviour cannot be described by short-range
s-wave scattering.

There exist already a number of studies inwhich different aspects of two dipolar particles in a harmonic
trapping potential have been considered, for example [19–22, 32, 39]. However,most of theseworks use
differentmodel potentials for the short-range interaction and discuss only part of the energy spectrumor focus
on a single effect. In section 4.1 a realistic short-range potential is used to discuss the complete energy spectrum
of two dipolar particles in an isotropic harmonic trap. This allows for the verification of various effects predicted
with simplified short-range interaction potentials as well as for a check of the numerical implementation.
Furthermore, the complete picture of the harmonic case is a pre-requisite for the understanding of the
anharmonic case discussed in section 4.2 inwhich relative and center-of-massmotions do not separate.

Figure 2. Interaction potential of two Li atoms in the lowest triplet state with a a27sc 0= − . This atomic interaction potential is used
as a prototype realistic atom–atom interaction potential.

3
This corresponds to a depth of the optical latticeV0 = 7.19Erwith recoil energyEr= ħ2 k2/2m.
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4.1. Isotropic harmonic trapping potential
The harmonic potential

V V k jr( ) (24)i i

j x y z

j j

, ,

0,
2 2

i i i

∑=
=

is obtained by a Taylor expansion of the optical-lattice potential truncated at second order. Introducing the

harmonic oscillator frequencies
V k2 0

2

ω =
μ

and
V k

M

4 0
2

Ω = where M m m m21 2= + = , the potential

V V r V R r M Rr( ) ( ) ( )
1

2

1

2
(25)i i rm CM

2 2 2 2μω Ω= + = +

is separable in relative and center-of-mass coordinates, i.e. the coupling termW r Rˆ ( , )vanishes. Since
additionally theDDI affects only the relative-motion coordinates, the center-of-massHamiltonian is the one of
an ordinary harmonic oscillator. Thus, we concentrate on the relative-motionHamiltonian in equation (14).

The total energy spectrum can be characterized by two different energy regimes. In the bound-state regime,
i.e. the energy range below the dissociation threshold in the absence of a trap, the characteristic energies are on
the order of the energies of the interaction potentialVsh that supports bound rovibrational states. In the trap-
state regime, i.e. for the states above the dissociation threshold in the absence of a trap, the characteristic energies
are on the order of the trap-discretized continuum states that we denote as trap states in the following. In our
case, the typical trap-state energies are of the order of a few ωℏ which corresponds in atomic units to about

E10 H
12− . The characteristic depth of the short-range potentialVsh is about 109 ω− ℏ . The typical energy

difference of the vibrational levels in units of ωℏ is approximately 108 ωℏ . Also the characteristic energy
difference of the rotational energy levels of about 107 ωℏ is orders ofmagnitude larger comparedwith the
characteristic energy scales of a few ωℏ in the trap-state regime. Therefore, the two regimeswill be discussed
separately in the following two subsections.

4.1.1. Bound-state regime
First the bound-state regime is considered. Sincewe adopt a realistic interaction potential there existmore than
one bound state. These bound states can couple to each other due to theDDI.

Figure 3 shows the energy spectrumof theAg symmetry of two identical dipolar particles in an isotropic
harmonic trap interacting via the short-range interaction potential (figure 2) as a function of the dipole
interaction strength of theDDI, which is characterized by the ratio between the dipole length add and the
harmonic-oscillator length aho. Since theAg symmetry is gerade, the spectrum represents identical bosons. The
dipolar interaction strength a add ho determines the behaviour of the system in the long-range regime. Infigure 3
groups of states appearwhich are partly degenerate at a a 0dd ho = and begin to separate for increasing dipole
interaction strength. Each group of states corresponds to one vibrational energy level and its rotational
excitations. In total there are eleven vibrational states supported by the short-range potential shown infigure 2.
In the calculation the number of rotational excitations for each vibrational energy level is limited by the number
Nl of the basis set in equation (18).

The group of states in the energy interval between E E0.0014 H= − and E E0.0012 H= − corresponds to
the vibrational ground state and its rotational excitations. The next set of states between E E0.0012 H= − and

Figure 3.Relative-motion energy spectrum for theAg symmetry of the D2h point group showing the bound regime of the energy
spectrum for variable dipolar interaction strength.

7
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E E0.0010 H= − corresponds to thefirst excited vibrational state and its rotational energy levels. For each set of
rovibrational states the properties are similar. As is visible fromfigure 3, the different rovibrational states of each
set respond differently to the increasing dipole interaction strength. Since the head-to-tail configuration
corresponds to states with the rotational quantumnumbersm=0, these states decrease in energywith increasing
dipole interaction strength. The states in the side-by-side configuration correspond to l m 0= ∣ ∣ ≠ quantum
numbers and increase in energy for increasing dipole interaction strength. The rovibrational ground state at
E E0.00137 H≈ − changesmost strongly with theDDI, since the expectation value of r r¯ φ φ= 〈 ∣ ∣ 〉 is the
smallest and therefore theDDImatrix elements are the largest, because the dipole–dipolematrix elements scale
as r 3− .With increasing vibrational excitation r̄ gets larger and the splitting of the different rovibrational states is
weaker.

Infigure 4 the different splittings of the first two sets of rovibrational states are shown in an enlarged view
compared tofigure 3. In the present calculation the basis set includes only l quantumnumbers up to N 8l = .
Since only even numbers of l andm are allowed in the gerade Ag case, there are five values of l contained in the
basis and the number of rotational states per vibrational level visible infigure 4 is correspondingly limited to this
number. Them degeneracy of the rotational levels is lifted because theDDI breaks the spherical symmetry. From
an analysis of thewavefunction of the deeply bound states the general properties of the states becomes evident,
see figure 5.While them quantumnumber is preserved, the l quantumnumbers are coupled by theDDI.
Therefore, each state consists of afixedm quantumnumber with contributions from all even l quantum
numbers. On this basis it is possible to judgewhether a state belongs dominantly to the head-to-tail or the side-
by-side configuration or is in between these extremes. In general, the states withm=0 correspond to the classical
head-to-tail configuration and states with m 0∣ ∣ > representmore the side-by-side configuration, especially the
states with l m 0= ∣ ∣ ≠ have a pronounced side-by-side geometry.

Infigure 5 the pair densities of the vibrational ground state with its rotational excitations are shown. These
pair densities do not possess a vibrational excitation as can be seen from themissing nodes in the radial part of
the pair densities. For the excited rotational statesfigures 5(b)–(f) additional nodes appear in the angular part of
the pair densities.Moreover, the states infigures 5(a), (b), and (d) correspond to the head-to-tail configuration,
since the probability for two dipolar particles to stand on top of each other is the largest. In contrast, the state in
figure 5(c) does not show a clear side-by-side or head-to-tail configuration as it hasminima in both cases. The
state infigure 5(f) has amaximum for the side-by-side configuration and increases in energy for an increasing
dipole interaction strength, as described above and visible from figure 4. Finally, the state shown infigure 5(e)
has a node for the head-to-tail configuration and somemaximum for the side-by-side configuration, but equal
maxima for the angle in between.

Figure 6 shows how the total potentialVint changes for small particle separations due to the dipolar
interaction a a a a( 0 or 0)dd ho dd ho= ≠ . The total potential infigure 6(b) becomes increasingly anisotropic
due to theDDI and dips for the head-to-tail configuration as well as bumps for the side-by-side configuration
appear. Since the total potential infigure 6(b) is shallower in the θ direction than in the radial direction, it is
more likely tofirst have excitations in the angular part of the pair densities, see figure 5.

In order to better understand the behavior of the pair densities shown infigure 5we consider themodel
Hamiltonian

Figure 4.Magnified view onfigure 3 that shows the different behaviour of the rovibrational levels with increasing dipole interaction
strength.
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consisting only of the angular part of the fullHamiltonian equation (1) for constant r r0= . The value of r0 is
chosen such that the pair density of the vibrational ground state has itsmaximum. The solution of themodel
Hamiltonian in equation (26) is obtained by diagonalizing themodelHamiltonian in the basis of spherical
harmonics.

Infigure 5, very good agreement is visible comparing the full solution (three-dimensional (3D) plots) for
constant r 80 ≈ with the solution of themodelHamiltonian (2Dplots).However, higher excited vibrational
states possess amore pronounced r dependence which leads to amore complex radial nodal structure as shown
infigure 7(a). In this case the simplifiedmodelHamiltonian is hence not expected to reproducewell the radial
behaviour.

Additionally, there existmetastable states above the trap-free dissociation threshold. In the absence of aDDI
such states gain their stability by the centrifugal barrier, but they can dissociate by tunnelling through this
barrier.With increasing dipole interaction strength thosemetastable states strongly respond to theDDI, since
the distance of the two dipolar particles is small compared to the inter-particle distance of trap states, see figure 7.
For increasingDDI, ametastable state can increase (decrease) in energy depending onwhether the configuration
of the state is dominantly side-by-side (head-to-tail). Similarly, a bound state that is in energy close to the trap-
free dissociation threshold for a vanishingDDI can increase in energy above the threshold if it has a predominant

Figure 5.Pair densities r( , , 0)ρ θ ϕ = of the six energetically lowest lying bound states (sorted from (a) to (f)) for the dipole
interaction strength a a 0.025dd ho = . The solutions of the fullHamiltonian in equation (3) (3Dplots) are compared to the ones of the
modelHamiltonian in equation (26) (2Dplots).

Figure 6. Full interaction potential Vint for different interaction strengths a add ho. (a) Isotropic casewithoutDDI a a( 0)dd ho = .
(b) Short-range potential with a non-zeroDDI a a( 0.15)dd ho = .
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side-by-side configuration. In this case the state can surpass the (trap-free) continuum threshold and becomes
an unbound ormetastable state.

4.1.2. Trap-state regime
Next, we consider the trap-state regime. The basically horizontal lines infigure 8 correspond to the harmonic-
oscillator trap states in the diabatic picture. Since this is the energy spectrumof theAg symmetry, only even
numbers of l andm are allowed. The energy of two non-interacting particles in a 3D isotropic trap in spherical
coordinates is E k( 3 2)ho ω= + ℏ , with k n l2≡ + . Thus the degeneracy of the energy level k is

k k( 2)( 4) 8+ + where k 0, 2, 4, 6 ...= are only even numbers due to theAg symmetry. For the even k
quantumnumbers the spacing of the harmonic-trap states is 2 ωℏ in accordance with the energies shown in
figure 8.

The almost vertical lines at a a 0.03dd ho = , a a 0.09dd ho = , a a 0.15dd ho = , and a a 0.17dd ho = are bound
states that show avoided crossings with the trap-discretized continuum states leading to dipole-induced
resonances (DIR) [21, 24, 32], see section 4.1.3. These bound states consist of amixture of all spherical
harmonics with different l but equalm quantumnumbers. The fact that those bound states appear as almost
vertical lines is a consequence of the very different energy scales differing by 7 to 8 orders ofmagnitude between
the bound states and the trap states, as was discussed earlier.

The bound state at a a 0.11dd ho = lies rather close to the dissociation threshold for vanishingDDI and has a
predominant side-by-side configuration. This leads to an increasing energy that surpasses the (trap-free)
dissociation threshold for a largeDDI. The bound state at a a 0.19dd ho = is ametastable state, see section 4.1.1.
Both states do not couple to trap states because of non-agreeingm quantumnumbers.

Figure 7.Relative-motion pair density r( , , 0)ρ θ of (a) a bound state close to the interaction potential thresholdwith
E 49.283 ω= − ℏ at a a 0.01dd ho = and (b) thefirst trap state with E 1.488 ω= ℏ for a dipole interaction strength of
a a 0.001.dd ho =

Figure 8.Relative-motion energy spectrum for theAg symmetry of the D2h point group showing the trap-state regime of the energy
spectrum as a function of the dipole interaction strength.
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4.1.3. Dipole-induced resonances
Akey feature of the energy spectrum infigure 8 is the occurrence of broad scattering resonances usually denoted
asDIR [21–24, 30–32, 36]. These resonancesmanifest as broad avoided crossings in the energy spectrum and are
found for a a 0.03dd ho ≈ , a a 0.09dd ho ≈ , a a 0.15dd ho ≈ , and a a 0.17dd ho ≈ . They can be understood in the
followingway. Increasing the dipole interaction strength deepens the interaction potentialVint and introduces a
newbound state in the inter-particle potential [24]. This bound state crosses in energy with trap states. Due to
the dipolar coupling between the states these crossings become avoided. A further increase of the interaction
strength repeats this process leading to the series of resonances (avoided crossings) as is visible infigure 8.

The excited trap states that do not couple to the bound states (e.g. the almost horizontal line at E 3.5 ω≈ ℏ )

are l 0≠ states. The centrifugal barrier
l l

r2

( 1)2

2μ
ℏ +

shields the trap states fromnoticing the bound state that is

muchmore confined compared to a trap state, see figure 7.Due to the shielding effect of the centrifugal barrier
for the trap states with l 0≠ there is very little overlapwith the bound state. This leads to an almost vanishing
coupling.

4.1.4. Influence of the short-range potential
To investigate the influence of the short-range potential for dipolar particles, the s-wave scattering length of the
short-range potential for zeroDDI is varied by an inner-wallmanipulation [38]. Infigure 9 the energy spectra of
two dipolar particles are shown as a function of the dipole interaction strength for two different values of the s-
wave scattering length of the bare short-range potentialVsh. As infigure 8 theDIRs are easily visible as avoided
crossings. A variation ofVsh changes the position of theDIR as is shown infigure 10 (a). The short-range
potential has a strong influence on the position of theDIR, since the short-range potential determines the
position of the last bound state. For increasing interaction strength theDDI deepens the overall potential and
newbound states are supported. The position of the last bound state in the short-range potential determines
thus the interaction strength a add ho for which a new bound state is supported in the full potential. By shifting
the inner-wall of the short-range potentialVsh the position of the last bound state is shifted accordingly.
Therefore, it is clear that also the positions of theDIRs change. Thismechanism can be seen infigure 10 (a).
Evidently, it is possible tomodify the positions of theDIRs over a wide range, actually seemlessly going fromone
DIR to the next one. It is certainly remarkable that this effect can be used to directly control the positions of the
DIRs and thus allows for amanipulation of dipolar quantum gases.

4.1.5. Dipole-induced trap-state resonances
In [32] it was shown that besides theDIR inwhich a trap and a bound state couple, additional avoided crossings
can be found in the energy spectra, if the dipole-interaction strength is varied. These are avoided crossings
between trap states for whichwe thus propose the name dipole-induced trap-state resonances (DITSR) in order
to distinguish them from theDIRs involving two states of rather different character. TheseDITSR can occur,
since trap states with very similar energies but different (dominant) l quantumnumbers showdifferent slopes as
a function of the dipole strength. Theywere proposed to be useful for quantum-state engineering, since they
allow, e.g., for an adiabatic transfer from an isotropic trap state to a polarized one [32].

In order tofind the corresponding avoided crossings, a strong blow-up of the energy scale is required, see
figure 2 in [32]. Such an enlarged view offigure 8 is shown infigure 11. The red state corresponds to a trap state
where the dipoles possess a side-by-side configuration. It is well described by a harmonic oscillator state with

Figure 9.Relative-motion energy spectra for different short-range potentials which correspond to different s-wave scattering length
asc for zero dipole interaction strength: (a) a a 5ho sc = − and (b) a a 100.ho sc = This corresponds to either an attractive (a 0sc < ) or
a repulsive (a 0sc > ) short-range interaction.
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n l m( 0, 2, 2)= = = . Therefore, the energy of this state increases with the dipole interaction strength.
Moreover, there is a non-avoided crossing and thus noDITSRbetween the red and the green state. The green
state is a trap statewith quantumnumbers n l m( 1, 0, 0)= = = . From the selection rules of theDDI (see
section 3.2) it follows that only states with equalm quantumnumbers can couple due to theDDI. Consequently,
this is a non-avoided crossing of two non-interacting states. However, there is an avoided crossing (and thus a
DITSR) between the blue state n l m( 0, 2, 0)= = = and the green state. Its occurrence is a direct consequence
of the selection rules of theDDI. The coupling of the trap states (and thus thewidth of aDITSR) is significantly
smaller than the coupling in theDIR, because the couplingmatrix element equation (22) for two trap states is
smaller than for a trap and a bound state. Hence, the couplingmatrix element is larger for small r, which is the
case for themuchmore strongly confined bound state comparedwith a trap state. Our results confirm thus the
occurrence of the avoided crossings between trap states that were predicted in [32] by either using amodel
potential with a hard-core potential for the short-range interaction or by a pseudopotential. This confirmation is
especially interesting, since the position at which the presentDITSRoccurs is beyond the expected region of
validity of a pseudo-potential approach, since the characteristic length of the confinement is similar to the
characteristic length of the two-body interaction potential. Note, that the states shown in the inset offigure 11
correspond to trap states with a lower excitation energy than the ones infigure 2(b) of [32]. Therefore, only
states with (dominant) values l=0 and 2 are shown in the present case. On the other hand, in [32] onlym= 0was
consideredwhich explains the absence of a non-avoided crossing and the smaller number of states compared to
the present results. For example, in a corresponding calculation the (red) state n l m( 0, 2, 2)= = = would be
absent.

Similarly to theDIR (see section 4.1.4), also theDITSR is rather sensitive to the short-range interaction
potential and varies strongly for small variations of the scattering length (defined for the bare short-range
potential). Infigure 10 (b) it is shownhow the position of theDITSR changes as a function of the short-range

Figure 10.Position of some (a)DIRs and (b)DITSRs as a function of a aho sc.

Figure 11.Magnified view onfigure 8 that shows an avoided crossing between trap states. The quantumnumbers in the legend are
associatedwith the quantumnumbers of a harmonic oscillator. The indexing of the states with the quantumnumbers is only valid far
away from the resonance.
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potential and thus for different values of the s-wave scattering length. The positions of theDITSRs change
similarly to the ones of theDIRs as a function of a aho sc. Clearly, the positions of theDITSRs and theDIRs do
not change independently, but in a synchronousmanner. As for theDIR, this variation ismost pronounced, if
the scattering length has a small absolute value. In principle, it is possible to change the position of theDITSR
from zero interaction strength a a 0dd ho = to the region of the nextDIR. Beyond thisDIR the nextDITSR can
bemanipulated the sameway.

4.2. Anisotropic sextic trapping potential
Every realistic potential isfinite and hence certainly anharmonic. Therefore, in the following, the harmonic
approximation is abandoned and a sextic potential is consideredwhich has proven to accurately describe center-
of-mass to relativemotion coupling in single-well potentials [16, 17, 40]. A pancake-shaped trapwith an
anisotropy of 10zω ω =⊥ is adopted. Such a quasi-2D geometry is a common experimental set-up to stabilize a
dipolar BEC against collapse [41]. Again, the short-range potential of Li is chosen as a prototype short-range
potentialVsh. The sextic potential

V V k j k j k jr( )
1

3

2

45
(27)i i

j x y z

j j j j

, ,

2 2 4 4 6 6

i i i

⎜ ⎟⎛
⎝

⎞
⎠∑= − +

=

is obtained by a Taylor expansion of a sin2 optical lattice up to the sixth order.While in the harmonic case center-
of-mass and relativemotion decouple, for a sextic potential the coupling term

W V k r R k r R k r Rr Rˆ ( , )
1

3

1

12
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c c c c c c c c c c
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does not vanish.Note, the coupling term is non-zero even for a harmonic confinement if the two particles have
different products of polarizability andmass.Hence, for the description of the full spectrum the Schrödinger
equation of the six-dimensional (6D)Hamiltonian equation (3) has to be solvedwhich requires to perform the
exact diagonalization as described in section 3.1.

For distinguishable particles the coupling termW r R( , ) includes all non-separable parts of the form r Rn m

with n m, {0}∈ ⧹ . In the case of identical particles the non-separable parts consists ofmonomials with even

values of n andm, such as r R2 2, r R2 4, and r R4 2, see equation (28). Thematrix elements with the coupling term

W Wr R r R r R( , ) ˆ ( , ) ( , ) (29),
( ) ( )Φ Φ=α β
α β

couple configurationsΦwith gerade or ungerade symmetry for even values of n andm. The energy spectra shown
infigure 12were calculated for two dipolar particles in an anisotropic sextic trapping potential with the
interaction potential discussed before as a function of the dipole interaction strength a add ho.

Themajor difference between the complete energy spectra for the sextic trap comparedwith the relative-
motion spectrum in the harmonic case is evidently the appearance of the additional center-of-mass excitations.
While they are present also in the harmonic case, they do not couple to the relativemotion and can thus be
considered separately. This is not the case for the sextic trapwith coupling.Hence, in the spectrum containing
the center-of-mass excitations (figure 12)manymore states appear. The configurations of the excited center-of-
massmotion bound states r R( ) ( )bound 0

(ex)φ ψ cause a very dense area shown infigure 12(a) for a dipole
interaction strength of about a a 0.03dd ho ≈ . By includingmore configurations this area continues for dipole
interaction strengths above a a 0.03dd ho ≈ . However, in the present calculation of the energy spectrumonly the
relevant configurations are included, whichmeans only thosewith small energies of a few ωℏ are considered. In
figure 12(b) amagnified view offigure 12(a) is shown inwhich avoided crossings at a a 0.030857dd ho ≈ and
a a 0.030958dd ho ≈ can clearly be identified. Also a non-avoided (true) crossing next to the first avoided
crossing at a a 0.0309dd ho ≈ is visible.

In the energy spectrum center-of-mass excited bound states cross with trap states. The anharmonicity in the
external potential leads to a non-vanishing center-of-mass to relativemotion coupling.Hence, these crossings
are avoided for certain symmetries of the crossing states. At the avoided crossing, relative-motion binding
energy can be transferred into center-of-mass excitation energy due to the anharmonicity in the external
confinement. Since this is an inelastic process, we denote these resonances as inelastic confinement-induced
dipolar resonances (ICIDR).

These resonances are the dipolar analog for the Feshbach-type resonances induced by a coupling of center-
of-mass to relativemotion systems of ultracold atomswithoutDDI [14, 42–47].We follow the notation
introduced in [16, 17] and denote these resonances as ICIR. In complete analogy, also in the dipolar gases
resonances appear due to the coupling of center-of-mass excited bound states and trap states with lower center-
of-mass excitation for a non-zero coupling termW. The difference between ICIR and ICIDR is that the adiabatic
transformation of a trap state into a bound state is performed by a change of the scattering length (for example
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using amagnetic Feshbach resonance) or the geometry of the external confinement in the case of ICIR and by a
variation in dipolar interaction strength in the case of ICIDR.Moreover, for ultracold atoms there exists only a
single least bound state and the scattering length is determined by its position. Hence, for a specific center-of-
mass excitation only a single resonance (with the lowest trap state) exists in the case of ICIR. In contrast, there
exists an entire series of bound states for increasing dipolar interaction strength.Hence, a complete series of
resonances (with the lowest trap state) exist for each center-of-mass excitation in the case of ICIDR.

To understand the behaviour of the ICIDR inmore detail, we investigate the states labelled infigure 12(b).
The corresponding statesmay be expressed by their 6Dwavefunctions in absolute coordinates. Representative
cuts through the 6Dwavefunctions are shown infigure 13. Since the trapping potential is rather anisotropic

10zω ω =⊥ , the lowest energies correspond to states which have excitations in the x and y directions, because
the trap is shallower in these directions compared to the tight z direction. Infigure 13 thewavefunction boundφ ψβ

is shown. This state has a node at x x( 0, 0)1 2= = and does not interact with the state trap 0φ ψ . Hence the

coupling term from equation equation (29) has an anti-symmetric integrand and therefore the total integral
vanishes. The vanishing coupling term

W r Rˆ ( , ) 0 (30)trap 0 boundφ ψ φ ψ =β

leads to a non-avoided crossing between the states trap 0φ ψ and boundφ ψβ.Moreover, the trap state trap 0φ ψ and

the center-of-mass excited bound state boundφ ψα have a non-vanishing coupling term, since these states have the
same symmetry, which can be seen from the nodal structure of the cuts through thewavefunctions infigure 13.
Fromfigure 13 it can be concluded that solely states which have an even (odd) nodal structure can couple to each
other.Otherwise thewavefunctions have different symmetries, i.e.gerade and ungerade. This results in a
vanishing coupling term in equation (29), because the total integrand is anti-symmetric. It is important to note
that it has been demonstrated that the coupling of trap states to center-of-mass excited bound states at an ICIR
has lead tomassive atom losses and heating in a cloud of Cs atoms [18] due tomolecule formation [16, 17]. As a
consequence, it is expected that an ICIDR influences the stability of dipolar quantumgases aswell.

Figure 12. (a) CI spectrum for two aligned dipolar particles for an anisotropic sextic trapping potential with the same short-range
potential as infigure 8. (b)Magnified view offigure 12 resolving avoided and non-avoided crossings.

Figure 13.Cuts through the six-dimensional wavefunctions shown in the energy spectrum infigure 12(b). Cuts for
y y z z0, 0, 0, 01 2 1 2= = = = are displayed. From left to right the cuts, beginningwith trap 0φ ψ according to the labelling infigure 12,

are shown.
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5. Summary and conclusion

An approach is presented that allows for the numerical description of two ultracold particles interacting via an
arbitrary isotropic short-range interaction and the long-range, anisotropicDDI confined to afinite
orthorhombic 3Doptical lattice. The coupling between center-of-mass and relativemotion coordinates is
incorporated in a configuration-interactionmanner and hence the full 6D problem is solved. A key feature is the
ability to include a realistic inter-particle interaction potential, even purely numerically given Born–
Oppenheimer potential curves. The orthorhombic symmetry of the problem, preserved by theDDI, and the
quantum statistics (distinguishable particles as well as identical bosons or fermions) are explicitly incorporated
in the approach.

With the here presented approach a systemof two dipolar particles interacting via a short-range potential
trapped in a single well of an optical lattice was investigated. The complete energy spectrum and the various
resonances that occur in these systems are presented and discussed in a consistent way. TheDIR occur due to the
change of the total interaction potential and thus the bound-state spectrum as a result of a change of the dipole
interaction strength and couple a boundwith a trap state. Furthermore, the existence ofDIR between two trap
states (DITSR) is confirmed. The position of specific resonances can be precisely controlled by amanipulation of
the short-range potential by, e.g., amagnetic Feshbach resonance. This provides additional tools for controlling
andmanipulating trapped dipolar quantumgases. This has the potential to provide advanced cooling schemes,
by, e.g., performing adiabatic and diabatic changes of the dipole interaction strength.

In addition, the occurrence of ICIDRdue to a coupling of center-of-mass and relativemotion is
demonstrated. Themechanism of these resonances is universal and in analogy to ICIR of ultracold atoms
[16, 17] andCoulomb-interacting systems like quantumdots [48].

As a straightforward extension, the interaction potential of two non-aligned dipoles is planned. This

includes all spherical harmonicsV Y
q

q
dd 2

2
2∑∝

=−
. This leads to a coupling of both l andm quantumnumbers

and therefore an even richer energy spectrumwithmuchmore resonances is expected to be found.
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