91 research outputs found

    Reproductive system infections in women : upper genital tract, fetal, neonatal and infant syndromes

    Get PDF
    Lower genital tract infection and bloodborne spread of infection are the two principal modes for infection of the upper genital tract or for infection of the fetus, neonate or infant. Treponema pallidum and human immunodeficiency virus (HIV) are the two most common bloodborne pathogens that infect the fetus, neonate or infant. Most infections of the upper genital tract, however, spread along epithelial surfaces from the vagina or cervix to the upper genital tract or chorioamnion, fetus, neonate or infant. These infections are caused by either pathogens associated with a dysbiotic vaginal microbiome or those that are sexually transmitted. The clinical syndromes that these pathogens produce in the lower genital tract were discussed in part one of this review. We now discuss the syndromes and pathogens that affect the upper genital tract of both non-pregnant and pregnant women as well as fetus, neonate and infant.Peer reviewe

    Reproductive system infections in women : lower genital tract syndromes

    Get PDF
    Gynecological and obstetrical infectious diseases are an important component of women's health. A system approach to gynecological and obstetrical infection helps unify and classify microbial etiology and pathogenesis within a clinical anatomical framework of lower and upper genital tract syndromes. The reproductive system of women includes the vulva, vagina, cervix, uterus, fallopian tubes and ovaries. During pregnancy, additional tissues include the chorioamnion and placenta together with the fetus and amniotic fluid. We review in two parts reproductive system infection syndromes in women using selected research results to illustrate the clinical utility of the system approach in terms of diagnosis, treatment and prevention. We conclude that a reproductive system perspective will lead to improvements in understanding, management and prevention of these diseases.Peer reviewe

    Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens

    Get PDF
    Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH) are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped) in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i) Pmps' phylogeny and genetic polymorphism; ii) the location and distribution of protein features (GGA(I, L)/FxxN motifs and cysteine residues) that may impact pathogen-host interactions and protein conformation; and iii) the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8), epithelial-genital (N=25) and lymphogranuloma venereum (LGV) (N=20). We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L)/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group). Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective antigen (like PmpH) in order to prevent immune selection of phase variants.AN is a recipient of a post-doctoral fellowship (SFRH/BPD/75295/2010) from Fundação para a Ciência e a Tecnologia (FCT)

    Chlamydia trachomatis Serology in Women with and without Ovarian Cancer

    Get PDF
    Pelvic inflammation has been implicated in the genesis of ovarian cancer. We conducted serologic measurements of Chlamydia trachomatis antibodies as a surrogate marker of chlamydial pelvic inflammatory disease. Women with ovarian cancer (n = 521) and population-based controls (n = 766) were tested. IgG antibodies to serovar D of chlamydia elementary bodies (EBs) were detected using an ELISA assay. The odds of having ovarian cancer among women with the highest titers (≥0.40 OD units) were 0.6 (95% CI 0.4–0.9). These data do not support our earlier finding of elevated titers for antibodies to C. trachomatis among women with ovarian cancer

    Time Evolution of Disease Spread on Networks with Degree Heterogeneity

    Get PDF
    Two crucial elements facilitate the understanding and control of communicable disease spread within a social setting. These components are, the underlying contact structure among individuals that determines the pattern of disease transmission; and the evolution of this pattern over time. Mathematical models of infectious diseases, which are in principle analytically tractable, use two general approaches to incorporate these elements. The first approach, generally known as compartmental modeling, addresses the time evolution of disease spread at the expense of simplifying the pattern of transmission. On the other hand, the second approach uses network theory to incorporate detailed information pertaining to the underlying contact structure among individuals. However, while providing accurate estimates on the final size of outbreaks/epidemics, this approach, in its current formalism, disregards the progression of time during outbreaks. So far, the only alternative that enables the integration of both aspects of disease spread simultaneously has been to abandon the analytical approach and rely on computer simulations. We offer a new analytical framework based on percolation theory, which incorporates both the complexity of contact network structure and the time progression of disease spread. Furthermore, we demonstrate that this framework is equally effective on finite- and "infinite"-size networks. Application of this formalism is not limited to disease spread; it can be equally applied to similar percolation phenomena on networks in other areas in science and technology.Comment: 20 pages, 6 figure

    Modeling Control Strategies of Respiratory Pathogens

    Get PDF
    Contact network epidemiology can provide quantitative input even before pathogen is fully characterized

    The role of sexually transmitted infections in male circumcision effectiveness against HIV – insights from clinical trial simulation

    Get PDF
    BACKGROUND: A landmark randomised trial of male circumcision (MC) in Orange Farm, South Africa recently showed a large and significant reduction in risk of HIV infection, reporting MC effectiveness of 61% (95% CI: 34%–77%). Additionally, two further randomised trials of MC in Kisumu, Kenya and Rakai, Uganda were recently stopped early to report 53% and 48% effectiveness, respectively. Since MC may protect against both HIV and certain sexually transmitted infections (STI), which are themselves cofactors of HIV infection, an important question is the extent to which this estimated effectiveness against HIV is mediated by the protective effect of circumcision against STI. The answer lies in the trial data if the appropriate statistical analyses can be identified to estimate the separate efficacies against HIV and STI, which combine to determine overall effectiveness. OBJECTIVES AND METHODS: Focusing on the MC trial in Kisumu, we used a stochastic prevention trial simulator (1) to determine whether statistical analyses can validly estimate efficacy, (2) to determine whether MC efficacy against STI alone can produce large effectiveness against HIV and (3) to estimate the fraction of all HIV infections prevented that are attributable to efficacy against STI when both efficacies combine. RESULTS: Valid estimation of separate efficacies against HIV and STI as well as MC effectiveness is feasible with available STI and HIV trial data, under Kisumu trial conditions. Under our parameter assumptions, high overall effectiveness of MC against HIV was observed only with a high MC efficacy against HIV and was not possible on the basis of MC efficacy against STI alone. The fraction of all HIV infections prevented which were attributable to MC efficacy against STI was small, except when efficacy of MC specifically against HIV was very low. In the three MC trials which reported between 48% and 61% effectiveness (combining STI and HIV efficacies), the fraction of HIV infections prevented in circumcised males which were attributable to STI was unlikely to be more than 10% to 20%. CONCLUSION: Estimation of efficacy, attributable fraction and effectiveness leads to improved understanding of trial results, gives trial results greater external validity and is essential to determine the broader public health impact of circumcision to men and women

    Novel Avian Influenza H7N3 Strain Outbreak, British Columbia

    Get PDF
    Genome sequences of chicken (low pathogenic avian influenza [LPAI] and highly pathogenic avian influenza [HPAI]) and human isolates from a 2004 outbreak of H7N3 avian influenza in Canada showed a novel insertion in the HA0 cleavage site of the human and HPAI isolate. This insertion likely occurred by recombination between the hemagglutination and matrix genes in the LPAI virus
    corecore