173 research outputs found

    Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories

    Get PDF
    Warped convolutions of operators were recently introduced in the algebraic framework of quantum physics as a new constructive tool. It is shown here that these convolutions provide isometric representations of Rieffel's strict deformations of C*-dynamical systems with automorphic actions of R^n, whenever the latter are presented in a covariant representation. Moreover, the device can be used for the deformation of relativistic quantum field theories by adjusting the convolutions to the geometry of Minkowski space. The resulting deformed theories still comply with pertinent physical principles and their Tomita-Takesaki modular data coincide with those of the undeformed theory; but they are in general inequivalent to the undeformed theory and exhibit different physical interpretations.Comment: 34 page

    Deformations of quantum field theories on spacetimes with Killing vector fields

    Full text link
    The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincare transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.Comment: 35 pages, 3 figure

    A Midsummer Night's Dream

    Get PDF
    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    String-localized Quantum Fields and Modular Localization

    Full text link
    We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincar\'e group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting.Comment: minor correction

    Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    Full text link
    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.]Comment: 31 pages, 20 figures, 1 table, accepted for publication in JCAP, references and discussions adde

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Potential of fecal microbiota for early-stage detection of colorectal cancer

    Get PDF
    Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host-microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke
    corecore