4,443 research outputs found

    Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Get PDF
    A number of merging galaxy clusters shows the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intra-cluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts and eight with uncertain origin. All the six shocks detected have M<2\mathcal{M} < 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.Comment: Matched to the MNRAS published version, minor grammar and typo fixe

    Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration

    Get PDF
    The Fermi-LAT collaboration recently published deep upper limits to the gamma-ray emission of the Coma cluster, a cluster that hosts the prototype of giant radio halos. In this paper we extend previous studies and use a formalism that combines particle reacceleration by turbulence and the generation of secondary particles in the intracluster medium to constrain relativistic protons and their role for the origin of the radio halo. We conclude that a pure hadronic origin of the radio halo is clearly disfavoured as it would require magnetic fields that are too strong. For instance B0>21μB_0 > 21 \muG is found in the cluster center assuming that the magnetic energy density scales with thermal density, to be compared with B0∼4−5μB_0 \sim 4-5 \muG as inferred from Rotation Measures (RM) under the same assumption. However secondary particles can still generate the observed radio emission if they are reaccelerated. For the first time the deep gamma-ray limits allow us to derive meaningful constraints if the halo is generated during phases of reacceleration of relativistic protons and their secondaries by cluster-scale turbulence. In this paper we explore a relevant range of parameter-space of reacceleration models. Within this parameter space a fraction of model configurations is already ruled out by current gamma-ray limits, including the cases that assume weak magnetic fields in the cluster core, B≤2−3μB \leq 2-3 \muG. Interestingly, we also find that the flux predicted by a large fraction of model configurations that assume a magnetic field consistent with RM is not far from the limits. This suggests that a detection of gamma rays from the cluster might be possible in the near future, provided that the electrons generating the radio halo are secondaries reaccelerated and the magnetic field in the cluster is consistent with that inferred from RM.Comment: 22 pages, 12 figures, submitte

    The turbulent pressure support in galaxy clusters revisited

    Full text link
    Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of ∼5−15%\sim 5-15\% of the total pressure at R200R_{\rm 200}. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the cluster's gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of ∼10%\sim 10\% of the total pressure at R200R_{\rm 200}.Comment: 5 pages, 5 pages, accepted, to appear in MNRAS Letter

    Random Graph-Homomorphisms and Logarithmic Degree

    Get PDF
    A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is `sub-logarithmic', then the range of such a homomorphism is super-constant. Furthermore, some examples are provided, suggesting that perhaps for graphs with super-logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp transition is shown for a specific family of graphs C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with self-loops, of size k). That is, given any function psi(n) tending to infinity, the range of a typical homomorphism of C_{n,k} is super-constant for k = 2 log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)

    Efficiency of Turbulent Reacceleration by Solenoidal Turbulence and Its Application to the Origin of Radio Megahalos in Cluster Outskirts

    Get PDF
    Recent radio observations with the Low Frequency Array (LOFAR) discovered diffuse emission extending beyond the scale of classical radio halos. The presence of such megahalos indicates that the amplification of the magnetic field and acceleration of relativistic particles are working in the cluster outskirts, presumably due to the combination of shocks and turbulence that dissipate energy in these regions. Cosmological magnetohydrodynamical (MHD) simulations of galaxy clusters suggest that solenoidal turbulence has a significant energy budget in the outskirts of galaxy clusters. In this paper, we explore the possibility that this turbulence contributes to the emission observed in megahalos through second-order Fermi acceleration of relativistic particles and magnetic field amplification by the dynamo. We focus on the case of A2255 and find that this scenario can explain the basic properties of the diffuse emission component that is observed under assumptions that are used in previous literature. More specifically, we conduct a numerical follow-up, solving the Fokker-Planck equation by using a snapshot of an MHD simulation and deducing the synchrotron brightness integrated along the lines of sight. We find that a volume-filling emission, ranging between 30% and almost 100% of the projected area, depending on our assumptions on the particle diffusion and transport, can be detected at LOFAR sensitivities. Assuming a magnetic field B ∼ 0.2 μG, as derived from a dynamo model applied to the emitting region, we find that the observed brightness can be matched when ∼1% of the solenoidal turbulent energy flux is channeled into particle acceleration

    Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Get PDF
    Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2) and with a mixture (30% CO2 and 70% N2) in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4) in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules

    Simulating the transport of relativistic electrons and magnetic fields injected by radio galaxies in the intracluster medium

    Full text link
    Radio galaxies play an important role in the seeding of cosmic rays and magnetic fields in galaxy clusters. Here, we simulate the evolution of relativistic electrons injected into the intracluster medium by radio galaxies. Using passive tracer particles added to magnetohydrodynamical adaptive-mesh simulations, we calculate the evolution of the spectrum of relativistic electrons taking into account energy losses and re-acceleration mechanisms associated with the dynamics of the intracluster medium. Re-acceleration can occur at shocks via diffusive shock acceleration, and in turbulent flows via second-order Fermi re-acceleration. This study confirms that relativistic electrons from radio galaxies can efficiently fill the intracluster medium over scales of several 100 Myr100 \rm ~Myr, and that they create a stable reservoir of fossil electrons that remains available for further re-acceleration by shock waves and turbulent gas motions. Our results also show that late evolution of radio lobes and remnant radio galaxies is significantly affected by the dynamics of the surrounding intracluster medium. Here the diffusive re-acceleration couples the evolution of relativistic particles to the gas perturbations. In the near future, deep radio observations, especially at low frequencies, can probe such mechanisms in galaxy clusters.Comment: 22 pages, 20 figures, A & A, in pres
    • …
    corecore