503 research outputs found

    Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    Full text link
    High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.Comment: 11 pages, 5 figure

    Quantum Control of Photodissociation via Manipulation of Bond Softening

    Full text link
    We present a method to control photodissociation by manipulating the bond softening mechanism occurring in strong shaped laser fields, by varying the chirp sign and magnitude of an ultra-short laser pulse. Manipulation of bond-softening is experimentally demonstrated for strong field (795 nm, 10^12 - 10^13 W/cm^2) photodissociation of H2+, exhibiting substantial increase of dissociation by positively chirped pulses with respect to both negatively chirped and transform limited pulses. The measured kinetic energy release and angular distributions are used to quantify the degree of control of dissociation. The control mechanism is attributed to the interplay of dynamic alignment and chirped light induced potential curves.Comment: 4 pages, 4 figure

    Observation of light driven band structure via multi-band high harmonic spectroscopy

    Full text link
    Intense light-matter interactions have revolutionized our ability to probe and manipulate quantum systems at sub-femtosecond time scales, opening routes to all-optical control of electronic currents in solids at petahertz rates. Such control typically requires electric field amplitudes ∌V/A˚\sim V/\AA, when the voltage drop across a lattice site becomes comparable to the characteristic band gap energies. In this regime, intense light-matter interaction induces significant modifications of electronic and optical properties, dramatically modifying the crystal band structure. Yet, identifying and characterizing such modifications remains an outstanding problem. As the oscillating electric field changes within the driving field's cycle, does the band-structure follow, and how can it be defined? Here we address this fundamental question, proposing all-optical spectroscopy to probe laser-induced closing of the band-gap between adjacent conduction bands. Our work reveals the link between nonlinear light matter interactions in strongly driven crystals and the sub-cycle modifications in their effective band structure

    Profession Based Hierarchies as Barriers for Genuine Learning Processes

    Get PDF
    Under embargo until: 2021-06-26This chapter describes how profession based hierarchies (stratified social orders between professions) may appear in a teaching context of interprofessionality involving a variety of health professions presenting challenges to learning and offers suggestions on how these challenges can be overcome.acceptedVersio
    • 

    corecore