84 research outputs found

    A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays

    Full text link
    [EN] A detailed study on the spray local flow and flame structure has been performed by means of PIV and laser-sheet LIF techniques under Diesel spray conditions. Operating conditions were based on Engine Combustion Network recommendations. A consistent comparison of inert and reacting axial velocity fields has produced quantitative information on the effect of heat release on the local flow. Local axial velocity has been shown to increase 50-60% compared to the inert case, while the combustion-induced radial expansion of the spray has been quantified in terms of a 0.9-2.1 mm radius increase. As a result, the drop in entrainment rate has been quantified around 25% compared to the inert case. Streamline analysis also hints at a reduced entrainment under reacting conditions. A 1D spray model under reacting condition has been used, which confirms the modifications obtained in the main flow metrics when moving from inert to reacting conditions. When comparing the flow evolution with the flame structure, little effect of chemical activity on the spray flow upstream the lift-off length has been evidenced, in spite of the presence of formaldehyde in such regions. Only downstream of the lift-off length, as defined by OH LIF, has a strong change in flow pattern been observed as a result of combustion-induced heat release. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.This work was carried out during a scientific visit period by J.M. Garcia-Oliver at IFPEN in 2015, which was funded by the Spanish Ministry of Education, Culture and Sport (Grant PRX14/00192). This study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF (TRA2014-59483-R) project.García-Oliver, JM.; Malbec, L.; Toda, HB.; Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame. 179:157-171. https://doi.org/10.1016/j.combustflame.2017.01.023S15717117

    Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis

    Get PDF
    Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities

    A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments

    Get PDF
    This work presents an analysis of the stabilization of diffusion flames created by the injection of fuel into hot air, as found in Diesel engines. It is based on experimental observations and uses a dedicated Direct Numerical Simulation (DNS) approach to construct a numerical setup, which reproduces the ignition features obtained experimentally. The resulting DNS data are then used to classify and analyze the events that allow the flame to stabilize at a certain Lift-Off Length (LOL) from the fuel injector. Both DNS and experiments reveal that this stabilization is intermittent: flame elements first auto-ignite before being convected downstream until another sudden auto-ignition event occurs closer to the fuel injector. The flame topologies associated to such events are discussed in detail using the DNS results, and a conceptual model summarizing the observation made is proposed. Results show that the main flame stabilization mechanism is auto-ignition. However, multiple reaction zone topologies, such as triple flames, are also observed at the periphery of the fuel jet helping the flame to stabilize by filling high-temperature burnt gases reservoirs localized at the periphery, which trigger auto-ignitions

    Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection

    Get PDF
    Background: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts

    Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis

    Get PDF
    BACKGROUND: Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark. RESULTS: The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100–360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species. CONCLUSION: Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1261-2) contains supplementary material, which is available to authorized users

    Characterization of a set of ECN Spray A injectors : nozzle to nozzle variations and effect on spray characteristics

    No full text
    The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics. In particular, the measurements include the nozzle hole diameter, the rate of injection, the liquid and vapor penetrations, the auto-ignition delay and the lift-off length. Variations of ambient temperature, oxygen concentration and density have also been performed. In general the results show similar behavior to ECN standard injectors, confirming that this set of new injectors can be integrated into the pool of ECN injectors. However, discrepancies between spray characteristics were observed, although the injector specifications and the boundary conditions were sensibly the same. The sources of variations from injector to injector are analyzed in order to provide new information on the reproducibility of injectors characteristics, and improve the comparison methodology between experimental data and simulation

    Characterization of a set of ECN Spray A injectors : nozzle to nozzle variations and effect on spray characteristics

    Get PDF
    The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics. In particular, the measurements include the nozzle hole diameter, the rate of injection, the liquid and vapor penetrations, the auto-ignition delay and the lift-off length. Variations of ambient temperature, oxygen concentration and density have also been performed. In general the results show similar behavior to ECN standard injectors, confirming that this set of new injectors can be integrated into the pool of ECN injectors. However, discrepancies between spray characteristics were observed, although the injector specifications and the boundary conditions were sensibly the same. The sources of variations from injector to injector are analyzed in order to provide new information on the reproducibility of injectors characteristics, and improve the comparison methodology between experimental data and simulation
    • …
    corecore