60 research outputs found

    Effect of initial correlations on short-time decoherence

    Full text link
    We study the effect of initial correlations on the short-time decoherence of a particle linearly coupled to a bath of harmonic oscillators. We analytically evaluate the attenuation coefficient of a Schroedinger cat state both for a free and a harmonically bound particle, with and without initial thermal correlations between the particle and the bath. While short-time decoherence appears to be independent of the system in the absence of initial correlations, we find on the contrary that, for initial thermal correlations, decoherence becomes system dependent even for times much shorter than the characteristic time of the system. The temperature behavior of this system dependence is discussed.Comment: 7 pages, 1 figur

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412

    Renormalization approach for quantum-dot structures under strong alternating fields

    Full text link
    We develop a renormalization method for calculating the electronic structure of single and double quantum dots under intense ac fields. The nanostructures are emulated by lattice models with a clear continuum limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated non-perturbatively by means of the Floquet Hamiltonian. The renormalization approach allows the study of dressed states of the nanoscopic system with realistic geometries as well arbitrary strong ac fields. We give examples of a single quantum dot, emphasizing the analysis of the effective-mass limit for lattice models, and double-dot structures, where we discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure

    Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities

    Full text link
    The problem investigated in this paper is einselection, i. e. the selection of mutually exclusive quantum states with definite probabilities through decoherence. Its study is based on a theory of decoherence resulting from the projection method in the quantum theory of irreversible processes, which is general enough for giving reliable predictions. This approach leads to a definition (or redefinition) of the coupling with the environment involving only fluctuations. The range of application of perturbation calculus is then wide, resulting in a rather general master equation. Two distinct cases of decoherence are then found: (i) A ``degenerate'' case (already encountered with solvable models) where decoherence amounts essentially to approximate diagonalization; (ii) A general case where the einselected states are essentially classical. They are mixed states. Their density operators are proportional to microlocal projection operators (or ``quasi projectors'') which were previously introduced in the quantum expression of classical properties. It is found at various places that the main limitation in our understanding of decoherence is the lack of a systematic method for constructing collective observables.Comment: 54 page

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    A Measurement of the Proton Structure Function F ⁣2(x,Q2)F_{\!2}(x,Q^2)

    Full text link
    A measurement of the proton structure function F ⁣2(x,Q2)F_{\!2}(x,Q^2) is reported for momentum transfer squared Q2Q^2 between 4.5 GeV2GeV^2 and 1600 GeV2GeV^2 and for Bjorken xx between 1.81041.8\cdot10^{-4} and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F ⁣2F_{\!2} increases significantly with decreasing xx, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2Q^2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F ⁣2F_{\!2}.Comment: 32 pages, ps, appended as compressed, uuencoded fil

    Analysis of the Elements of Drag in Three-Dimensional Viscous and Inviscid Flows

    Get PDF
    This paper examines the analytical, experimental, and computational aspects of tlie determination of the drag acting on an aircraft in flight, with or without powered engines, for subsonic/transonic flow. Using a momentum approach, the drag is represented by an integral over a cross-flow plane at an arbitrary distance behind the aircraft Asymptotic evaluation of tlie integral shows tlie drag can be decomposed into three components corresponding to streamwise vorticity and variations in entropy and stagnation enthalpy. These are shown to be related to tlie established engineering concepts of induced drag, wave drag, profile drag and engine power and efficiency. This decomposition of the components of drag is useful in formulating techniques for accurately evaluating drag using computational fluid dynamics calculations or experimental data
    corecore