2,495 research outputs found

    Antiferromagnetic MnNi tips for spin-polarized scanning probe microscopy

    Full text link
    Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel magnetoresistance (TMR) with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and allowed operating conditions. In this study, we present the fabrication and use of SP-STM tips made from commercially available antiferromagnetic Mn88Ni12\rm{Mn_{88}Ni_{12}} foil. The tips are intrinsically SP, which is attractive for exploring magnetic phenomena in the zero field limit. The tip material is relatively ductile and straightforward to etch. We benchmark the conventional STM and spectroscopic performance of our tips and demonstrate their spin sensitivity by measuring the two-state switching of holmium single atom magnets on MgO/Ag(100)

    The structure of borders in a small world

    Get PDF
    Geographic borders are not only essential for the effective functioning of government, the distribution of administrative responsibilities and the allocation of public resources, they also influence the interregional flow of information, cross-border trade operations, the diffusion of innovation and technology, and the spatial spread of infectious diseases. However, as growing interactions and mobility across long distances, cultural, and political borders continue to amplify the small world effect and effectively decrease the relative importance of local interactions, it is difficult to assess the location and structure of effective borders that may play the most significant role in mobility-driven processes. The paradigm of spatially coherent communities may no longer be a plausible one, and it is unclear what structures emerge from the interplay of interactions and activities across spatial scales. Here we analyse a multi-scale proxy network for human mobility that incorporates travel across a few to a few thousand kilometres. We determine an effective system of geographically continuous borders implicitly encoded in multi-scale mobility patterns. We find that effective large scale boundaries define spatially coherent subdivisions and only partially coincide with administrative borders. We find that spatial coherence is partially lost if only long range traffic is taken into account and show that prevalent models for multi-scale mobility networks cannot account for the observed patterns. These results will allow for new types of quantitative, comparative analyses of multi-scale interaction networks in general and may provide insight into a multitude of spatiotemporal phenomena generated by human activity.Comment: 9 page

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Modeling one-dimensional island growth with mass-dependent detachment rates

    Full text link
    We study one-dimensional models of particle diffusion and attachment/detachment from islands where the detachment rates gamma(m) of particles at the cluster edges increase with cluster mass m. They are expected to mimic the effects of lattice mismatch with the substrate and/or long-range repulsive interactions that work against the formation of long islands. Short-range attraction is represented by an overall factor epsilon<<1 in the detachment rates relatively to isolated particle hopping rates [epsilon ~ exp(-E/T), with binding energy E and temperature T]. We consider various gamma(m), from rapidly increasing forms such as gamma(m) ~ m to slowly increasing ones, such as gamma(m) ~ [m/(m+1)]^b. A mapping onto a column problem shows that these systems are zero-range processes, whose steady states properties are exactly calculated under the assumption of independent column heights in the Master equation. Simulation provides island size distributions which confirm analytic reductions and are useful whenever the analytical tools cannot provide results in closed form. The shape of island size distributions can be changed from monomodal to monotonically decreasing by tuning the temperature or changing the particle density rho. Small values of the scaling variable X=epsilon^{-1}rho/(1-rho) favour the monotonically decreasing ones. However, for large X, rapidly increasing gamma(m) lead to distributions with peaks very close to and rapidly decreasing tails, while slowly increasing gamma(m) provide peaks close to /2$ and fat right tails.Comment: 16 pages, 6 figure

    Spin excitations in a 4f-3d heterodimer on MgO

    Get PDF
    We report on the magnetic properties of HoCo dimers as a model system for the smallest intermetallic transition metal-lanthanide compound. The dimers are adsorbed on ultrathin MgO(100) films grown on Ag(100). New for 4f4f elements, we detect inelastic excitations with scanning tunneling microscopy and prove by their behaviour in applied magnetic field that they are spin-excitations. In combination with density functional theory and spin Hamiltonian analysis we determine the magnetic level distribution, as well as sign and magnitude of the exchange interaction between the two atoms. In contrast to typical 4f−3d4f-3d bulk compounds, we find ferromagnetic coupling in the dimer

    A Three-Dimensional Solution of Flows over Wings with Leading-Edge Vortex Separation. Part 1: Engineering Document

    Get PDF
    A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments

    Developments in Longwall Ventilation

    Get PDF
    Rapid development in longwall mining technology has brought significant changes in panel layout and geometry. These changes require adaptations in the ventilation system to provide sufficient air quantities in longwall face and bleeder areas. At CONSOL, various longwall bleeder systems in the Pittsburgh No. 8 Seam have been studied with detailed ventilation surveys. Computer model network simulations were conducted from these surveys to study the effects of different bleeder configurations and ventilation adjustments. This paper examines the relationships between the longwall face air quantity and the convergence in the tailgate-to-bleeder entries, number of development entries, bleeder fan pressure and the tailgate ventilation scheme. It shows that, using conventional ventilation patterns, the face air quantity may be limited if the gob caves tightly. In such cases, modification of the ventilation pattern to an internal bleeder system, combined with appropriate tailgate ventilation and higher bleeder fan pressure may be required. Experience in CONSOL\u27s operations has proven this method successful especially in mines that changed from four-entry to three-entry longwall development

    High-resolution spatial mapping of a superconducting NbN wire using single-electron detection

    Full text link
    Superconducting NbN wires have recently received attention as detectors for visible and infrared photons. We present experiments in which we use a NbN wire for high-efficiency (40 %) detection of single electrons with keV energy. We use the beam of a scanning electron microscope as a focussed, stable, and calibrated electron source. Scanning the beam over the surface of the wire provides a map of the detection efficiency. This map shows features as small as 150 nm, revealing wire inhomogeneities. The intrinsic resolution of this mapping method, superior to optical methods, provides the basis of a characterization tool relevant for photon detectors.Comment: 2009 IEEE Toronto International Conference, Science and Technology for Humanity (TIC-STH

    Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    Full text link
    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement.Comment: 13 pages and 3 figure

    Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia

    Get PDF
    Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a 'missing ligand' genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity
    • 

    corecore