

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW c© 2015 Society for Industrial and Applied Mathematics
Vol. 57, No. 4, pp. 535–565

Composing Scalable Nonlinear
Algebraic Solvers∗

Peter R. Brune†

Matthew G. Knepley‡

Barry F. Smith†

Xuemin Tu§

Abstract. Most efficient linear solvers use composable algorithmic components, with the most com-
mon model being the combination of a Krylov accelerator and one or more preconditioners.
A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear com-
position of different nonlinear solvers may significantly improve the time to solution. We
describe the basic concepts of nonlinear composition and preconditioning and present a
number of solvers applicable to nonlinear partial differential equations. We have developed
a software framework in order to easily explore the possible combinations of solvers. We
show that the performance gains from using composed solvers can be substantial compared
with gains from standard Newton–Krylov methods.

Key words. iterative solvers, nonlinear problems, parallel computing, preconditioning, software

AMS subject classifications. 65F08, 65Y05, 65Y20, 68W10

DOI. 10.1137/130936725

1. Introduction. Large-scale algebraic solvers for nonlinear partial differential
equations (PDEs) are an essential component of modern simulations. Newton–Krylov
methods [23] have well-earned dominance: They are generally robust and may be
built from preexisting linear solvers and preconditioners, including fast multilevel
preconditioners such as multigrid [5, 7, 9, 68, 73] and domain decomposition methods
[56, 64, 65, 67]. Newton’s method starts from whole-system linearization. The lin-
earization leads to a large sparse linear system where the matrix may be represented
either explicitly by storing the nonzero coefficients or implicitly by various “matrix-
free” approaches [11, 42]. However, Newton’s method has a number of drawbacks as a
stand-alone solver. The repeated construction and solution of the linearization cause
memory bandwidth and communication bottlenecks to come to the fore with regard
to performance. Also possible is a lack of convergence robustness when the initial
guess is far from the solution. Luckily, a large design space for nonlinear solvers exists
to complement, improve, or replace Newton’s method. Only a small part of this space
has yet been explored either experimentally or theoretically.

∗Received by the editors September 12, 2013; accepted for publication (in revised form) January
7, 2015; published electronically November 5, 2015. This material was based upon worked supported
by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under
contract DE-AC02-06CH11357.

http://www.siam.org/journals/sirev/57-4/93672.html
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

(prbrune@mcs.anl.gov, bsmith@mcs.anl.gov).
‡Searle Chemistry Laboratory, Computations Institute, University of Chicago, Chicago, IL 60637

(knepley@ci.uchicago.edu).
§Department of Mathematics, University of Kansas, Lawrence, KS 66045 (xtu@math.ku.edu).

535

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213420164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

536 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

In this paper we consider a wide collection of solvers for nonlinear equations. In
direct equivalence to the case of linear solvers, we use a small number of algorithmic
building blocks to produce a vast array of solvers with different convergence and
performance properties. Two related solver techniques, nonlinear composition and
preconditioning, are used to construct these solvers. The contributions of this article
are twofold: the introduction of a systematic approach to combining nonlinear solvers
mathematically and within software, and the demonstration of the construction of
efficient solvers for several problems of interest. Implementations of the solvers in this
article are available in the PETSc library and may be brought to bear on relevant
applications, whether simulated on a laptop or on a supercomputer.

2. Background. We concern ourselves with the solution of nonlinear equations
of the form

(2.1) F(x) = b

for a general discretized nonlinear function F : Rn → R
n and right-hand side (RHS)

b. We define the nonlinear residual as

(2.2) r(x) = F(x)− b.

We retain both notations as certain solvers (see section 5.3) require the RHS to be
modified. We will use

(2.3) J(x) =
∂F(x)

∂x

to denote the Jacobian of F(x).
The linear system

Ax = b

with residual

r(x) = Ax− b

is an important special case from which we can derive valuable insight into solvers for
the nonlinear problem. Stationary solvers for linear systems repeatedly apply a linear
operator in order to progressively improve the solution. The application of a linear
stationary solver by defect correction may be written as

(2.4) xi+1 = xi −P−1 (Axi − b) ,

where P−1 is a linear operator, called a preconditioner, whose action approximates,
in some sense, the inverse of A. The Jacobi, Gauss–Seidel, and multigrid iterations
are all examples of linear stationary solvers.

Composition of linear preconditioners P−1 and Q−1 may proceed in two different
ways, producing two new stationary solvers. The first is the additive combination

xi+1 = xi −
(
αPP

−1 + αQQ−1
)
(Axi − b) ,

with weights αP and αQ. The second is the multiplicative combination

xi+1/2 = xi −P−1 (Axi − b) ,

xi+1 = xi+1/2 −Q−1
(
Axi+1/2 − b

)
.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 537

Compositions consisting of P−1 and Q−1 are an effective acceleration strategy if P−1

eliminates a portion of the error space and Q−1 handles the rest. A now mature
theory for these compositions was developed in the 1980s and 1990s in the context of
domain decomposition methods [63, 67].

Linear left- and right-preconditioning, when used in conjunction with Krylov
iterative methods [59], is standard practice for the parallel solution of linear systems
of equations. We write the use of a linear Krylov method as K(A,x,b), where A is
the matrix, x the initial solution, and b the RHS.

Linear left-preconditioning recasts the problem as

P−1(Ax − b) = 0,

while right-preconditioning takes two stages,

AP−1y = b,

P−1y = x,

where one solves for the preconditioned solution y and then transforms y using P−1

to the solution of the original problem.

3. Nonlinear Composed Solvers. We take the basic patterns from the previous
section and apply them to the nonlinear case. We emphasize that unlike the linear
case, the nonlinear case requires the approximate solution as well as the residual to
be defined both in the outer solver and in the preconditioner. With this in mind, we
will show how composition and preconditioning may be systematically transferred to
the nonlinear case.

We use the notation xi+1 = M(r,xi) for the action of a nonlinear solver. In most
cases, but not always, r = r(xi), that is, r is simply the most recent residual. It
is also useful to consider the action of a solver that is dependent on the previous m
approximate solutions and the previous m residuals as xi+1 = M(r,xi−m+1, . . . ,xi,
ri−m+1, . . . , ri). Methods that store and use information from previous iterations
such as previous solutions, residuals, or step directions will have those listed in the
per-iteration inputs as well.

Nonlinear composition consists of a sequence or series of two (or more) solution
methods M and N, which both provide an approximate solution to (2.1). Nonlinear
preconditioning, on the other hand, may be cast as a modification of the residual r
through application of an inner method N. The modified residual is then provided to
an outer solver M, which solves the preconditioned system.

An additive composition may be written as

(3.1) xi+1 = xi + αM (M(r,xi)− xi) + αN (N(r,xi)− xi)

for weights αM and αN. The multiplicative composition is

(3.2) xi+1 = M(r,N(r,xi)) = M(r(N(r(xi),xi)),N(r(xi),xi)),

which simply states: update the solution using the current solution and residual with
the first solver and then update the solution again using the resulting new solution and
new residual with the second solver. Nonlinear left-preconditioning may be directly
recast from the linear stationary solver case:

(3.3) P−1 (Ax− b) = 0,

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

538 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

which we can rewrite as a fixed-point problem

(3.4) x−P−1 (Ax− b) = x

with nonlinear analogue

(3.5) x = N(r,x),

so the equivalent preconditioned nonlinear problem can be reached by subtracting x
from both sides, giving

(3.6) x−N(r,x) = 0.

Thus, the left-preconditioned residual is given by

(3.7) rl(x) = x−N(r,x).

Under certain circumstances the recast system will have better conditioning and less
severe nonlinearities than the original system. The literature provides several exam-
ples of nonlinear left-preconditioning: nonlinear successive overrelaxation (SOR) has
been used in place of linear left-applied SOR [19], and additive Schwarz-preconditioned
inexact Newton (ASPIN) [16] uses an overlapping nonlinear additive Schwarz method
(NASM) to provide the left-preconditioned problem for a Newton’s method solver.
Walker and Ni’s fixed-point preconditioned Anderson mixing [70] uses a similar
methodology. Many of these methods or variants thereof are discussed and tested
later in this paper.

Nonlinear right-preconditioning1 involves a different recasting of the residual.
This time, we treat the nonlinear solver N as a nonlinear transformation of the prob-
lem to one with solution y, as x = P−1y is a linear transformation of x. Accordingly,
the nonlinear system in (2.1) can be rewritten as the solution of the system perturbed
by the preconditioner

(3.8) F(N(F,y)) = b

and the solution by outer solver M as

(3.9) yi+1 = M(r(N(F, ·)),xi)

followed by

xi+1 = N(r,yi+1).

Nonlinear right-preconditioning may be interpreted as M putting preconditioner N
“within striking distance” of the solution. One can solve for y in (3.8) directly, with
an outer solver using residual r(N(r,x)). However, the combination of inner solve and
function evaluation is significantly more expensive than computing F(x) and should
be avoided. We will show that when M(r,x) is a Newton–Krylov solver, (3.9) is
equivalent to (3.2). Considering them to have similar mathematical and algorithmic
properties is appropriate in general.

1Note that nonlinear right-preconditioning is a misnomer because it does not simplify to right
linear preconditioning in the linear case; it actually results in the new linear system A(I−P−1A)y =
(I − AP−1)b. However, as with linear right-preconditioning, the inner solver is applied before the
function (matrix-vector product in the linear case) evaluation, hence the name.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 539

In the special case of Newton’s method, nonlinear right-preconditioning is re-
ferred to by Cai [15] and Cai and Li [17] as nonlinear elimination [45]. The idea
behind nonlinear elimination is to use a local nonlinear solver to fully resolve difficult
localized nonlinearities when they begin to cause difficulties for the global Newton’s
method; see section 4.4. Grid sequencing [41, 66] and pseudotransient [39] contin-
uation methods work by a similar principle, using precursor solves to put Newton’s
method at an initial guess from which it has fast convergence. Alternating a global
linear or nonlinear step with local nonlinear steps has been studied as the LATIN
method [20, 43, 44]. Full approximation scheme (FAS) preconditioned nonlinear GM-
RES (NGMRES), discussed below, for recirculating flows [53] is another application of
nonlinear right-preconditioning, where the FAS iteration is stabilized and accelerated
by constructing a combination of several previous FAS iterates.

For solvers based on a search direction, left-preconditioning is much more natural.
In fact, general line searches may be expressed as left-preconditioning by the nonlinear
Richardson method. Left-preconditioning also has the property that for problems
with poorly scaled residuals, the inner solver may provide a tenable search direction
when one cannot be found based on the original residual. A major difficulty with
the left-preconditioned option is that the function evaluation may be much more
expensive. Line searches involving the direct computation of x − M(r,x) at points
along the line may be overly expensive given that the computation of the residual now
requires nonlinear solves. Line searches over x−M(r,x) may also miss stagnation of
weak inner solvers and must be monitored. One may also base the line search on the
unpreconditioned residual. The line search based on x−M(r,x) is often recommended
[37] and is the “correct” one for general left-preconditioned nonlinear solvers.

Our basic notation for compositions and preconditioning is described in Table 3.1.

Table 3.1 Nonlinear compositions and preconditioning given outer and inner solvers M and N.

Composition type Symbol Statement Abbreviation
Additive composite + x+ αM (M(r,x)− x) + αN (N(r,x)− x) M+N

Multiplicative composite ∗ M(r,N(r,x)) M ∗N
Left-preconditioning −L M(x−N(r,x),x) M−L N

Right-preconditioning −R M(r(N(r, x)),x) M−R N
Inner linearization inversion \ y = J(x)−1r(x) = K(J(x), y0, r(x)) NEWT\K

4. Solvers. We now introduce several algorithms, the details of their implemen-
tation and use, and an abstract notion of how they may be composed. We first
describe outer solution methods and how composition is applied to them. We then
move on to solvers used primarily as inner methods. The distinction is arbitrary but
leads to the discussion of decomposition methods in section 5.

4.1. Line Searches. The most popular strategy for increasing robustness or pro-
viding globalization in the solution of nonlinear PDEs is the line search. Given a func-
tional f(x), a starting point xi, and a direction d, we compute λ ≈ argminμ>0 f(xi+
μd). The functional f(·) may be ‖r(·)‖22 or a problem-specific objective function.
Theoretical guarantees of convergence may be made for many line search procedures
if d is a descent direction. In practice, many solvers that do not converge when only
full or simply damped steps are used converge well when combined with a line search.
Different variants of line searches are appropriate for different solvers and we may or-
ganize them into two groups based on a single choice taken in the algorithm: whether
or not the full step is likely to be sufficient (for example, with Newton’s method near

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

540 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

the solution). If it is likely to be sufficient, the algorithm should default to taking the
full step in a performance-transparent way. If not, and some shortening or lengthen-
ing of the step is assumed to be required, the line search begins from the premise that
it must determine this scaling factor.

In the numerical solution of nonlinear PDEs, we generally want to guarantee
progress in the minimization of f(x) = ‖r‖22 at each stage. However, ∇‖r‖22 is not r,
but instead 2J�(x)r(x). With Newton’s method, the Jacobian has been computed
and iteratively inverted before the line search and may be used in the Jacobian-vector
product. Also note that the transpose product is not required for the line search,
since the slope of f(x) in the direction of step y may be expressed as the scalar
quantity s = r(x)T (J(x)y). A cubic backtracking (BT) line search as described in
Dennis and Schnabel [25] is used in conjunction with methods based on Newton’s
method in this work. The one modification necessary is that it is modified to act on
the optimization problem arising from ‖r(x)‖22. BT defaults to taking the full step if
that step is sufficient with respect to the Wolfe conditions [74], and it does no more
work unless necessary. The BT line search may stagnate entirely for ill-conditioned
Jacobians [69]. For a general step BT is not appropriate for a few reasons. First, steps
arising from methods other than Newton’s method are more likely to be ill-scaled,
and as such the assumption that the full step is appropriate is generally invalid.
For this reason we only use BT in the case of Newton’s method. Second, there are
also cases where we lose many of the other assumptions that make BT appropriate.
Most of the algorithms described here, for example, do not necessarily assemble the
Jacobian and require many more iterations than does Newton’s method. Jacobian
assembly, just to perform the line search, would become extremely burdensome in
these cases. This situation removes any possibility of using many of the technologies
we could potentially import from optimization, including safeguards and guarantees
of minimization. However, in many cases one can still assume that the problem
has optimization-like qualities. Suppose that r(x) is the gradient of some (hidden)
objective functional f(x) instead of ‖r‖22. Trivially, one may minimize the hidden
f(x+ λy) by finding its critical points, which are roots of

y�r(x+ λy) =
df(x+ λy)

dλ
,

using a secant method. The resulting critical point (CP) line search is outlined in
Algorithm 1.

Algorithm 1. CP Line Search.
1: procedure CP(r,y, λ0, n)
2: λ−1 = 0
3: for i = 0 do n− 1

4: λi+1 = λi − y�r(x+λiy)(λi−λi−1)
y�r(x+λiy)−y�r(x+λi−1y)

5: end for
6: return λn

CP differs from BT in that it will not minimize ‖r(x+λy)‖2 over λ. However, CP
shows much more rapid convergence than does L2 (see Algorithm 2) for certain solvers
and problems. Both line searches may be started from λ0 as an arbitrary or problem-
dependent damping parameter, and λ−1 = 0. In practice, one iteration is usually
satisfactory. For highly nonlinear problems, however, overall convergence may be

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 541

accelerated by a more exact line search corresponding to a small number of iterations.
CP has also been suggested for nonlinear conjugate gradient (NCG) methods [62].

If our assumption of optimization-like qualities in the problem becomes invalid,
then we can do little besides attempt to find a minimum of ‖r(x+λy)‖2. An iterative
secant search for a minimum value of ‖r(x+ λy‖2 is defined in Algorithm 2.

Algorithm 2. L2 Line Search.
1: procedure L2(r,y, λ0, n)
2: λ−1 = 0
3: for i = 0 do n− 1

4: ∇y‖r(x+ λiy)‖22 =
3‖r(x+λiy)‖2

2−4‖r(x+ 1
2 (λi+λi−1)y)‖2

2+‖r(x+λi−1y))‖2
2

(λi−λi−1)

5: ∇y‖r(x+ λi−1y)‖22 =
‖r(x+λiy)‖2

2−4‖r(x+ 1
2 (λi+λi−1)y)‖2

2+3‖r(x+λi−1y))‖2
2

(λi−λi−1)

6: λi+1 = λi − ∇y‖r(x+λiy)‖2
2(λi−λi−1)

∇y‖r(x+λiy)‖2
2−∇y‖r(x+λi−1y)‖2

2

7: end for
8: return λn

When converged, L2 is equivalent to an optimal damping in the direction of the
residual and will forestall divergence. ∇y is calculated by polynomial approximation,
requiring two additional residual evaluations per application. In practice and in our
numerical experiments the number of inner iterations n is 1.

4.2. Nonlinear Richardson (NRICH). The nonlinear analogue to the Richard-
son iteration is merely the simple application of a line search. NRICH takes a step in
the negative residual direction and scales that step sufficiently to guarantee conver-
gence. NRICH is known as steepest descent [32] in the optimization context, where r
is the gradient of a functional f(·) noted above. NRICH is outlined in Algorithm 3.

Algorithm 3. NRICH Iteration.
1: procedure NRICH(r,xi)
2: d = −r(xi)
3: xi+1 = xi + λd � λ determined by line search

4: return xi+1

NRICH is often slow to converge for general problems and stagnates quickly. How-
ever, different step directions than r may be generated by nonlinear preconditioning
and can improve convergence dramatically.

Algorithm 4. NRICH Iteration: Left-Preconditioned by M().

1: procedure NRICH(x −M(r,x),xi)
2: d = M(r,xi)− xi

3: xi+1 = xi + λd � λ determined by line search

4: return xi+1

As shown in Algorithm 4, we replace the original residual equation r(x) with
x − M(r,x) and apply NRICH to the new problem. There are two choices for r
in the line search. The first is based on minimizing the original residual, as in the
unpreconditioned case; the second minimizes the norm of the preconditioned residual

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

542 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

instead. Minimizing the unpreconditioned residual with a preconditioned step is more
likely to stagnate, as there is no guarantee that the preconditioned step is a descent
direction with respect to the gradient of ‖r(x)‖22.

4.3. Anderson Mixing (ANDERSON). ANDERSON [2] constructs a new ap-
proximate solution as a combination of several previous approximate solutions and a
new trial.

Algorithm 5. ANDERSON.
1: procedure ANDERSON(r,xi · · ·xi−m+1)
2: xM

i = xi + λr(xi)

3: minimize
∥∥∥r((1−∑i−1

k=i−m αk

)
xM
i +

∑i−1
k=i−m αkx

M
k

)∥∥∥
2
over {αi−m · · ·αi}

4: xi+1 =
(
1−∑i

k=i−m αk

)
xM
i +

∑i−1
k=i−m αkx

M
k

5: return xi+1

In practice, the nonlinear minimization problem in Algorithm 5 is simplified. The
αi are computed by considering the linearization
(4.1)

r

((
1−

i−1∑
k=i−m

αk

)
xM
i +

i−1∑
k=i−m

xM
k

)
≈
(
1−

i−1∑
k=i−m

αk

)
r(xM

i) +

i−1∑
k=i−m

r(xM
k)

and solving the related linear least-squares problem

(4.2) [r(xj)− r(xM)]�[r(xi)− r(xM)]αj = r(xi)
�[r(xi)− r(xM)].

ANDERSON solves (4.2) by dense factorization. The work presented here uses the
SVD-based least-squares solve from LAPACK in order to allow for potential singu-
larity of the system arising from stagnation to be detected outside of the subsystem
solve. A number of related methods fall under the broad category of nonlinear se-
ries accelerator methods. These include ANDERSON as stated above. NGMRES
[72] is a variant that includes conditions to avoid stagnation and direct inversion
in the iterative subspace (DIIS) [55], which formulates the minimization problem
in an alternative fashion. Both right- and left-preconditioning can be applied to
ANDERSON. With right-preconditioning, the computation of xM

i = xi−1 + λd is
replaced with xM = M(r,xi−1) and r(xi) with r(xM). This incurs an extra function
evaluation, although this is usually included in the nonlinear preconditioner applica-
tion. Left-preconditioning can be applied by replacing r with rl. Right-preconditioned
NGMRES has been applied for recirculating flows [53] using FAS and in stabilizing
lagged Newton’s methods [18, 60]. Simple preconditioning of NGMRES has also been
proposed in the optimization context [22]. Preconditioned ANDERSON has been
leveraged as an outer accelerator for the Picard iteration [47, 71].

We can use the same formulation expressed in (4.2) to determine αM and αN

(or any number of weights) in (3.1), using the solutions and final residuals from a
series of inner nonlinear solvers instead of the sequence of previous solutions. This
sort of residual-minimizing technique is generally applicable in additive compositions
of solvers. All instances of additive composition in the experiments presented here
use this formulation.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 543

4.4. Newton–Krylov Methods (NEWT\K). In NEWT\K methods, the search
direction is determined by inexact iterative inversion of the Jacobian applied to the
residual by using a preconditioned Krylov method.

Algorithm 6. NEWT\K.

1: procedure NEWT\K(r,xi)
2: d = J(xi)

−1r(xi) � approximate inversion by Krylov method
3: xi+1 = xi + λd � λ determined by line search

4: return xi+1

NEWT\K cannot be guaranteed to converge far away from the solution, and it is
routinely enhanced by a line search. In our formalism, NEWT\Kwith a line search can
be expressed as NRICH left-preconditioned by NEWT\K coming from Algorithm 4.
However, we will consider line search globalized NEWT\K as the standard and will
omit the outer NRICH when using it, leading to Algorithm 6. Other globalizations,
such as trust-region methods, are also often used in the context of optimization but
will not be covered here.

NEWT\K is the general-purpose workhorse of a majority of simulations requiring
solution of nonlinear equations. Numerous implementations and variants exist, both
in the literature and as software [12, 27]. The general organization of the compo-
nents of NEWT\K is shown in Figure 4.1. Note that the vast majority of potential
customizations occurs at the level of the linear preconditioner and that access to fast
solvers is limited to that step.

Newton

Krylov

Preconditioner

Subdomain Multilevel Block Composite
PC PC

PCPC
PC

Algebraic

Direct

PC PCPC ... PCPC

Fig. 4.1 Organization of a Newton–Krylov solver with potential points of customization. Although
one can alter the type, parameters, or tolerances of Newton’s method, the Krylov solver,
or the line search, we see that the majority of the potential customization and composition
occurs at the level of the preconditioner. Possibilities include the use of algebraic precondi-
tioners, such as direct solvers or sparse factorizations, or domain decomposition, multigrid,
or composite solvers, which all have subcomponent solvers and preconditioners. These di-
visions may either be by subdomain, as with the additive Schwarz methods, or by physics
field components, as with block preconditioners (for example, one block for pressures and
one for velocities).

Nonlinear right-preconditioning of Newton’s method can take two forms. We
describe our choice and comment on the alternative. At first glance, right-precondi-
tioning of Newton’s method requires construction or application of the right-precondi-
tioned Jacobian

(4.3)
∂F(M(r,y))

∂y
= J(M(r,y))

∂M(r,y)

∂y
,

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

544 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

and we note that the computation of ∂M(r,yi)
∂yi

is generally impractical. Consider the
application of nonlinear right-preconditioning on an iteration of Newton’s method,
which would proceed in two steps:

yi+1 = xi − λ

(
∂M(r,xi)

∂xi

)−1

J (M(r,xi))
−1

r(M(r,xi)),

xi+1 = M(r,yi+1).

We may nest these two steps as

(4.4) xi+1 = M

(
r,xi − λ

(
∂M(r,xi)

∂xi

)−1

J(M(r,xi))
−1r(M(r,xi))

)
,

and by Taylor expansion we see that

M(r,x− λd) = M(r,x)− λ

(
∂M(r,x)

∂x

)
d+ · · · ,

giving the simplification

xi+1 ≈ M(r,xi)− λ

(
∂M(r,xi)

∂xi

)(
∂M(r,xi)

∂xi

)−1

J(M(r,xi))
−1r(M(r,xi))

= M(r,xi)− λJ(M(r,xi))
−1r(M(r,xi)).

In this form, NEWT\K(F(M(r,x)),x) is easily implemented, as shown in Algo-
rithm 7.

Algorithm 7. Right-Preconditioned NEWT\K.

1: procedure NK(r(M(r,x)),xi)
2: xi+ 1

2
= M(r,xi)

3: d = J(xi+ 1
2
)−1r(xi+ 1

2
)

4: xi+1 = xi+ 1
2
+ λd � λ determined by line search

5: return xi+1

Note that NEWT\K −R M is merely M ∗ NEWT\K in this form: one solver
runs after the other. The connection between composition and preconditioning in
Newton’s method provides an inkling of the advantages afforded to NEWT\K as an
inner composite solver combined with other methods. An alternative approach applies
an approximation to (4.3) directly [4]. The approximation is

F(M(r,yi)) = J(M(r,yi))

(
∂M(r,yi)

∂yi

)
(yi+1 − yi)

≈ J(M(r,yi))(M(r,yi + [yi+1 − yi])− xi),

which is solved for [yi+1 − yi]. Right-preconditioning by the approximation requires
an application of the nonlinear preconditioner for every inner Krylov iterate and limits
our choices of Krylov solver to those tolerant of nonlinearity, such as flexible GMRES
[58].

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 545

Algorithm 8. Left-Preconditioned NEWT\K.

1: procedure NEWT\K(x−M(r,x),xi)

2: d = ∂(xi−M(r,xi))
∂xi

−1
(xi −M(r,xi)) � approximate inversion by Krylov

method
3: xi+1 = xi + λd � λ determined by line search

4: return xi+1

For nonlinear left-preconditioning, shown in Algorithm 8, we replace the computa-
tion r(xi) with xi−M(r,xi) and take the Jacobian of the function as an approximation
of

(4.5)
∂(xi −M(r,xi))

xi
= I− ∂M(r,xi)

∂xi
,

where now the Jacobian is a linearization of M(r,x) and impractical to compute
in most cases. In the particular case where the preconditioner is the NASM (see
section 5.2), this is known as ASPIN. In the case of NASM preconditioning, one has
local block Jacobians, so the approximation of the preconditioned Jacobian as

(4.6)
∂(x−M(r,x))

∂x
=

∂(x− (x−∑b J
b(xb)−1rb(xb)))

∂x
≈
∑
b

Jb(xb∗)−1J(x)

is used instead. The iteration requires only one inner nonlinear iteration and a small
number of block solves per outer nonlinear iteration. By contrast, direct differencing
would require one inner iteration at each inner linear iteration for the purpose of
repeated approximate Jacobian application. Note the similarity between ASPIN and
the alternative form of right-preconditioning in terms of required components, with
ASPIN being more convenient in the end.

4.5. Quasi-Newton. The class of methods for nonlinear systems of equations
known as quasi-Newton (QN) methods [24] uses previous changes in residual and
solution or other low-rank expansions [40] to form an approximation of the inverse
Jacobian by a series of low-rank updates. The approximate Jacobian inverse is then
used to compute the search direction. If the update is done directly, it requires storing
and updating the dense matrix K ≈ J−1, which is impractical for large systems.
One may overcome this limitation by using limited-memory variants of the method
[46, 51, 14, 49], which apply the approximate inverse Jacobian by a series of low-rank
updates. The general form of QN methods is similar to that of NEWT\K and is
shown in Algorithm 9.

Algorithm 9. QN Update.

1: procedure QN(r,xi, si−1 . . . si−m,yi−1 . . .yi−m)
2: xi+1 = xi − λKi(K0, si−1 . . . si−m,yi−1 . . .yi−m)r(xi) � λ determined by line

search
3: si = xi+1 − xi

4: yi = r(xi+1)− r(xi)

5: return xi+1

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

546 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

A popular variant of the method, L-BFGS, can be applied efficiently by a two-loop
recursion [51]:

Algorithm 10. Two-Loop Recursion for L-BFGS.

1: procedure Ki(K0, si−1 . . . si−m,yi−1 . . .yi−m, r(xi))
2: d1 = r(xi)
3: for k = i− 1 do i−m

4: αk =
s�k d1

y�
k sk

5: d1 = d1 − αkyk

6: end for
7: d2 = K0d1

8: for k = i−m do i− 1

9: βk =
y�
k d2

y�
k sk

10: d2 = d2 + (αk − βk)sk
11: end for
12: return d2

Note that the update to the Jacobian in Algorithm 10 is symmetric and shares
many of the same limitations as NCG (see section 4.6). It may be perplexing, from
an optimization perspective, to see L-BFGS and NCG applied to nonlinear PDEs
as opposed to optimization problems. However, their exclusion from our discussion
would be as glaring as leaving conjugate gradient methods out of a discussion of Krylov
solvers for linear PDEs. In this paper we adhere to the limitations of NCG and QN and
use them only for problems with symmetric Jacobians. In the case where L-BFGS is
inapplicable, Broyden’s “good” and “bad” methods [13] have efficient limited memory
constructions [14, 26, 29] and are recommended instead [52]. The overall performance
of all these methods, however, may rival that of Newton’s method [38] in many cases.
QN methods also have deep connections with ANDERSON [28]. ANDERSON and
the Broyden methods belong to a general class of Broyden-like methods [29].

The initial approximate inverse Jacobian K0 is often taken as the weighted [61]
identity. However, one also can take K0 = J−1

0 for lagged Jacobian J0. Such schemes
greatly increase the robustness of lagged Newton’s methods when solving nonlinear
PDEs [10]. Left-preconditioning for QN is trivial, and either the preconditioned or
unpreconditioned residual may be used with the line search.

4.6. Nonlinear Conjugate Gradients. NCG methods [31] are a simple exten-
sion of the linear conjugate gradient method but with the optimal step length in the
conjugate direction determined by a line search rather than the exact formula that
works in the linear case. NCG is outlined in Algorithm 11. NCG requires the stor-
age of one additional vector for the conjugate direction ci but has significantly faster
convergence than does NRICH for many problems. Several choices exist for con-
structing the parameter βi [21, 30, 31, 35]. We choose the Polak–Ribière–Polyak [54]
variant. The application of nonlinear left-preconditioning is straightforward. Right-
preconditioning is not conveniently applicable as is the case with QN in section 4.5
and linear conjugate gradient.

NCG has limited applicability because it suffers from the same issues as its linear
cousin for problems with nonsymmetric Jacobian. A common practice when solving
nonlinear PDEs with NCG is to rephrase the problem in terms of the normal equations,
which involves finding the root of rN (x) = J�r(x). Since the Jacobian must be

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 547

Algorithm 11. NCG.
1: procedure NCG(r,xi, ci−1, ri−1)
2: ri = r(xi)

3: βi =
r�i (ri−ri−1)

r�i−1ri−1

4: ci = −r(xi) + βici−1

5: xi+1 = xi + λci � λ determined by line search

6: return xi+1

assembled and multiplied at every iteration, however, the normal equation solver is
not a reasonable algorithmic choice, even with drastic lagging of Jacobian assembly.
The normal equations also have a much worse condition number than does the original
PDE. In our experiments, we use the conjugacy-ensuring CP line search.

5. Decomposition Solvers. An extremely important class of methods for linear
problems is based on domain or hierarchical decomposition, and so we consider nonlin-
ear variants of domain decomposition and multilevel algorithms. We introduce three
different nonlinear solver algorithms based on point-block solves, local subdomain
solves, and coarse-grid solves.

These methods require a trade-off between the amount of computation dedicated
to solving local or coarse problems and the communication for global assembly and
convergence monitoring. Undersolving the subproblems wastes the communication
overhead of the outer iteration, and oversolving exacerbates issues of load imbalance
and leads rapidly to diminishing returns with respect to convergence. The solvers in
this section exhibit a variety of features related to these trade-offs.

The decomposition solvers do not guarantee convergence. While they might con-
verge, the obvious extension is to use them in conjunction with the global solvers as
nonlinear preconditioners or accelerators. As the decomposition solvers expose more
possibilities for parallelism or acceleration, their effective use in the nonlinear context
should provide similar benefits to the analogous solvers in the linear context. A ma-
jor disadvantage of these solvers is that each of them requires additional information
about the local problems, a decomposition, or the hierarchy of discretizations of the
domain.

5.1. Gauss–Seidel–Newton. Effective methods may be constructed by exact
solves on subproblems. Suppose that the problem easily decomposes into nb small
block subproblems. If Newton’s method is applied multiplicatively by blocks, the
resulting algorithm is known as Gauss–Seidel–Newton (GSN) and is shown in Algo-
rithm 12. Similar methods are commonly used as nonlinear smoothers [33, 34]. To
construct GSN, we define the individual block Jacobians Jb(xb) and residuals rb(xb);
Rb, which restricts to a block; and Pb, which injects the solution to that block back
into the overall solution. The point-block solver runs until the norm of the block
residual is less than εb or mb steps have been taken. GSN solves small subproblems
with a fair amount of computational work per degree of freedom and thus has high
arithmetic intensity. It requires typically greater than two times the work per degree
of freedom of NRICH for scalar problems, and even more for vector problems where
the local Newton solve is over several local degrees of freedom.

When used as a solver, GSN requires one reduction per iteration. However, sta-
tionary solvers, in both the linear and nonlinear cases, do not converge robustly for
large problems. Accordingly, GSN would typically be used as a preconditioner, mak-

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

548 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

Algorithm 12. GSN.
1: procedure GSN(r,xi)
2: xi+1 = xi

3: for b = 1 do nb

4: xb
i,0 = Rbxi+1

5: while ‖rb‖2 > εb and j < mb do
6: j = j + 1

7: xb
i,j = xb

i,j−1 − Jb(xb
i,j−1)

−1rbi,j−1 � direct inversion of block Jacobian

8: rbi,j = rb(xb
i,j)

9: end while
10: xi+1 = xi+1 −Pb(xb

i,0 − xb
i,j)

11: end for
12: return xi+1

ing monitoring of global convergence within the GSN iterations unnecessary. Thus,
in practice there is no synchronization; GSN is most easily implemented with multi-
plicative update on serial subproblems and additively in parallel.

5.2. Nonlinear Additive Schwarz Method. GSN can be an efficient underlying
kernel for sequential nonlinear solvers. For parallel computing, however, an addi-
tive method with overlapping subproblems has desirable properties with respect to
communication and arithmetic intensity. The NASMs allow for medium-sized sub-
problems to be solved with a general method, and the corrections from that method
to be summed into a global search direction. Here we limit ourselves to decomposition
by subdomain rather than splitting the problem into fields. While eliminating fields
might be tempting, the construction of effective methods of this sort is significantly
more involved than in the linear case, and many interesting problems do not have
such a decomposition readily available. Using subdomain problems FB, restrictions
RB, injections PB , and solvers MB, Algorithm 13 outlines the NASM solver with nB

subdomains.

Algorithm 13. NASM.
1: procedure NASM(r,xi)
2: for B = 1 do nB

3: xB
0 = RBxi

4: xB = MB(rB ,xB
0)

5: yB = xB
0 − xB

6: end for

7: xi+1 = xi −
nB∑
B=1

PByB

8: return xi+1

Two choices exist for the injections PB in the overlapping regions. We will use
NASM to denote the variant that uses overlapping injection corresponding to the
whole subproblem step. The second variant, restricted additive Schwarz (RAS),

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 549

injects the step in a nonoverlapping fashion. The subdomain solvers are typically
Newton–Krylov, but the other methods described in this paper are also applicable.

5.3. Full Approximation Scheme. FAS [6] accelerates convergence by advanc-
ing the nonlinear solution on a series of coarse rediscretizations of the problem. As
with standard linear multigrid, the cycle may be constructed either additively or mul-
tiplicatively, with multiplicative being more effective in terms of per-iteration conver-
gence. Additive approaches provide the usual advantage of allowing the coarse-grid
corrections to be computed in parallel. We do not consider additive FAS in this paper.

Given the smootherMs(r,x) at each level, as well as restriction (R), prolongation
(P), and injection (R̂) operators, and the coarse nonlinear function FH , the FAS V-
cycle takes the form shown in Algorithm 14.

Algorithm 14. FAS.
1: procedure FAS(r,xi)
2: xs = Ms(r,xi)
3: xH

i = R̂xs

4: bH = R[b− F(xs)] + FH(xH
i)

5: xc = xs +P[FAS(FH − bH ,xH
i)− xH

i]
6: xi+1 = Ms(r,xc)

7: return xi+1

The difference between FAS and linear multigrid is the construction of the coarse
RHS bH . In FAS it is guaranteed that if an exact solution x∗ to the fine problem is
found,

(5.1) FAS(rH − bH , R̂x∗)− R̂x∗ = 0.

The correction is not necessary in the case of linear multigrid. However, FAS is
mathematically identical to standard multigrid when applied to a linear problem.

The stellar algorithmic performance of linear multigrid methods is well docu-
mented, but the arithmetic intensity may be low. FAS presents an interesting alter-
native to NEWT\K−MG, since it may be configured with high arithmetic intensity
operations at all levels. The smoothers are themselves nonlinear solution methods.
FAS-type methods are applicable to optimization problems as well as nonlinear PDEs
[8], with optimization methods used as smoothers [50].

5.4. Summary. We have now introduced the mathematical construction of non-
linear composed solvers. We have also described two classes of nonlinear solvers, based
on solving either the global problem or some partition of it. The next step is to de-
scribe a set of test problems with different limitations with respect to which methods
will work for them, construct a series of instructive example solvers using composition
of the previously defined solvers, and test them. We have made an effort to create
flexible and robust software for composed nonlinear solvers. The organization of the
software is in the spirit of PETSc and includes several interchangeable component
solvers, including NEWT\K; iterative solvers such as ANDERSON and QN that may
contain an inner preconditioner; decomposition solvers such as NASM and FAS, built
out of subdomain solvers; and metasolvers implementing compositions. A diagram
enumerating the composed solver framework analogous to that of the preconditioned
NEWT\K case is shown in Figure 5.1.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

550 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

Fig. 5.1 Organization of the components of a composed nonlinear solver. We discard the difference
between solvers and preconditioners and see that nesting and potential for recursive cus-
tomization live at every level of the tree. Possibilities include iterative solvers (including
Newton’s method) with nonlinear preconditioning, composite solvers consisting of several
subsolvers, or decomposition solvers consisting of subdomain or coarse nonlinear solvers.

6. Experiments. We will demonstrate the efficacy of nonlinear composition and
preconditioning by experiments with a suite of nonlinear PDEs that show interest-
ing behavior in regimes with difficult nonlinearities. These problems are nonlinear
elasticity, the lid-driven cavity with buoyancy, and the p-Laplacian.

One goal of this paper is to be instructive. We first try to solve the problem
efficiently with the standard solvers, then choose a subset of the above solvers for each
problem and show how to gain advantage by using composition methods. Limitations
of discretization or problem regime are noted, and we discuss how the solvers may be
used under these limitations. We also explain how readers may run the examples in
this paper and experiment with the solvers both on the test examples shown here and
on their own problems. We feel we have no “skin in the game” and are not trying to
show that some approaches are better or worse than others.

6.1. Methods. Our set of test algorithms is defined by the preconditioning of
an iterative solver with a decomposition solver, or the composition of two solvers
with different advantages. In the case of the decomposition solvers, we choose one
or two configurations per test problem in order to avoid the combinatorial explosion
of potential methods that already is apparent from the two forms of composition
combined with the multitude of methods.

Our primary measure of performance is time to solution, which is both problem
and equipment dependent. Since it depends strongly on the relative cost of func-
tion evaluation, Jacobian assembly, matrix multiplication, and subproblem or coarse
solve, we also record the numbers of nonlinear iterations, linear iterations, linear
preconditioner applications, function evaluations, Jacobian evaluations, and nonlin-
ear preconditioner applications. These measures allow us to characterize efficiency
disparities in terms of major units of computational work.

We make a good faith effort to tune each method for performance while keeping
subsolver parameters invariant. Occasionally, we err on the side of oversolving for
the inner solvers, to make the apples-to-apples comparison more consistent between
closely related methods. The results here should be taken as a rough guide to improv-
ing solver performance and robustness. The test machine is a 64-core AMD Opteron
6274-based [1] machine with 128 GB of memory. The problems are run with one MPI
process per core. Plots of convergence are generated with Matplotlib [36], and plots
of solutions are generated with Mayavi [57].

6.2. Nonlinear Elasticity. A Galerkin formulation for nonlinear elasticity may
be stated as

(6.1)

∫
Ω

F · S : ∇v dΩ +

∫
Ω

b · v dΩ = 0

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 551

for all test functions v ∈ V ; F = ∇u+I is the deformation gradient. We use the Saint
Venant–Kirchhoff model of hyperelasticity with second Piola–Kirchhoff stress tensor
S = λtr(E)I +2μE for Lagrangian Green strain E = F�F − I and Lamé parameters
λ and μ, which may be derived from a given Young’s modulus and Poisson ratio.
We solve for displacements u ∈ V , given a constant load vector b imposed on the
structure.

The domain Ω is a 60◦ cylindrical arch of inner radius 100 m. Homogeneous
Dirichlet boundary conditions are imposed on the outer edge of the ends of the arch.
The goal is to “snap through” the arch, causing it to sag under the load rather than
merely compressing it. To cause the sag, we set b = −ey and set the Lamé constants
consistent with a Young’s modulus of 100 and a Poisson ratio of 0.2. The nonlinearity
is highly activated during the process of snapping through and may be tuned to present
a great deal of difficulty to traditional nonlinear solvers. The problem is discretized
by using hexahedral Q1 finite elements on a logically structured grid, deformed to
form the arch. The grid is 401× 9× 9, and therefore the problem has 97,443 degrees
of freedom. The problem is a three-dimensional extension of a problem put forth by
Wriggers [75]. The unstressed and converged solutions are shown in Figure 6.1.

Fig. 6.1 Unstressed and stressed configurations for the elasticity test problem. Coloration indicates
vertical displacement in meters.

For three-dimensional hexahedral FEM discretizations, GSN and related algo-
rithms are inefficient because for each degree of freedom each element in the support
of the degree of freedom must be visited, resulting in eight visits to an interior ele-
ment per sweep. Instead, we focus on algorithms requiring only a single visit to each
cell, restricting us to function and Jacobian evaluations. Such approaches are also
available in the general unstructured FEM case, and these experiments may guide
users in regimes where no decomposition solvers are available.

For the experiments, we emphasize the role that nonlinear composition and se-
ries acceleration may play in the acceleration of nonlinear solvers. The problem is
amenable to NCG, ANDERSON, and NEWT\K with an algebraic multigrid precon-
ditioner. We test a number of combinations of these solvers. Even though we have a
logically structured grid, we approach the problem as if no reasonable grid hierarchy
or domain decomposition were available. The solver combinations we use are listed in
Table 6.1. In all the following tables, “Solver” denotes outer solver, “LPC” denotes
the linear PC when applicable, “NPC” denotes the nonlinear PC when applicable,
“Side” denotes the type of preconditioning, “Smooth” denotes the level smoothers

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

552 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

Table 6.1 Series of solvers for the nonlinear elasticity test problem.

Name Solver LPC NPC Side Smooth LS

NCG NCG CP

NEWT\K−MG NEWT\K MG – – SOR BT

NCG−L(NEWT\K−MG) NCG – NEWT\K−MG L SOR CP

ANDERSON−R(NEWT\K−MG) ANDERSON – NEWT\K−MG R SOR CP

NCG(10)+(NEWT\K−MG) NCG,NEWT\K MG – – SOR CP/BT

NCG(10) ∗ (NEWT\K−MG) NCG,NEWT\K MG – – SOR CP/BT

used in the multilevel method (MG/FAS), and “LS” denotes line search. For the
NEWT\K methods, we precondition the inner GMRES solve with a smoothed aggre-
gation algebraic multigrid method provided by the GAMG package in PETSc. The
relative tolerance for the GMRES solve is 10−3. For all instances of the NCG solver,
the CP line search initial guess for λ is the final value from the previous nonlinear
iteration. In the case of ANDERSON −R (NEWT\K − MG) the inner line search
is L2. ANDERSON stores up to 30 previous solutions and residuals for all experi-
ments. The outer line search for NCG−L (NEWT\K−MG) is a second-order secant
approximation rather than first-order as depicted in Algorithm 1. For the composite
examples, 10 iterations of NCG are used as one of the subsolvers, denoted NCG(10).
The additive composition’s weights are determined by the ANDERSON minimization
mechanism as described in section 4.3.

The example, SNES ex16.c, can be run directly by using a default PETSc instal-
lation. The command line used for these experiments is

./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9 -height 3 -width 3
-rad 100 -young 100 -poisson 0.2 -loading -1 -ploading 0

The solvers shown in Table 6.2 converge slowly. NEWT\K −MG takes 27 non-
linear iterations and 1,618 multigrid V-cycles to reach convergence. NCG requires
8,991 function evaluations and, since it is unpreconditioned, scales unacceptably with
problem size with respect to number of iterations. Note in Figure 6.2 that while NCG
takes an initial jump and then decreases at a constant rate, NEWT\K−MG is near
stagnation until the end, when it suddenly drops into the basin of attraction.

Results for composition are listed in Table 6.3. Additive and multiplicative com-
posite combinations provide roughly similar speedups for the problem, with more total
outer iterations in the additive case. As shown in Figure 6.3, neither the additive nor
the multiplicative methods stagnate. After the same initial jump and convergence at
the pace of NCG, the basin of attraction is reached and the entire iteration converges
quadratically, as should be expected with NEWT\K.

Left-preconditioning of NCG and ANDERSON with NEWT\K−MG provides
even greater benefits, as shown in Figure 6.4 and Table 6.4. The number of iterations
is nearly halved from the unpreconditioned case, and the number of linear precondi-

Table 6.2 (NEWT\K−MG) and NCG results.

Solver T N. It L. It Func Jac PC NPC
(NEWT\K−MG) 23.43 27 1556 91 27 1618 –

NCG 53.05 4495 0 8991 – – –

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 553

0 10 20 30 40 50 60

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

‖r
(x
)‖

2

(NEWT\K−MG)
NCG

Fig. 6.2 (NEWT\K−MG) and NCG convergence.

Table 6.3 NCG(10) + (NEWT\K−MG) and NCG(10) ∗ (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
NCG(10) + (NEWT\K−MG) 14.92 9 459 218 9 479 –
NCG(10) ∗ (NEWT\K−MG) 16.34 11 458 251 11 477 –

0 2 4 6 8 10 12 14 16 18

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

‖r
(x
)‖

2

NCG(10)+(NEWT\K−MG)
NCG(10)*(NEWT\K−MG)

Fig. 6.3 NCG(10) + (NEWT\K−MG) and NCG(10) ∗ (NEWT\K−MG) convergence.

tioner applications is only slightly increased compared with the composition cases. In
Figure 6.4, we see that the Newton’s method-preconditioned nonlinear Krylov solvers
never dive as with NEWT\K but instead maintain rapid, mostly constant conver-
gence. This constant convergence is a significantly more efficient path to solution
than the NEWT\K−MG solver alone.

6.3. Driven Cavity. The driven cavity formulation used for the next set of ex-
periments can be stated as

−Δu−∇× Ω = 0,(6.2)

−ΔΩ+∇ · (uΩ)−Gr∇xT = 0,(6.3)

−ΔT + Pr∇ · u = 0.(6.4)

The fluid motion is driven in part by a moving lid and in part by buoyancy. A Grashof

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

554 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

0 2 4 6 8 10

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

‖r
(x
)‖

2

ANDERSON−R(NEWT\K−MG)
NCG−L(NEWT\K−MG)

Fig. 6.4 ANDERSON−R (NEWT\K−MG) and NCG−L (NEWT\K−MG) convergence.

Table 6.4 ANDERSON−R (NEWT\K−MG) and NCG−L (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
ANDERSON−R (NEWT\K−MG) 9.65 13 523 53 13 548 13

NCG−L (NEWT\K−MG) 9.84 13 529 53 13 554 13

number Gr = 2e4, Prandtl number Pr = 1, and lid velocity of 100 are used in these
experiments. No-slip, rigid-wall Dirichlet conditions are imposed for u. Dirichlet con-
ditions are used for Ω, based on the definition of vorticity, Ω = ∇ × u, where along
each constant coordinate boundary the tangential derivative is zero. Dirichlet condi-
tions are used for T on the left and right walls, and insulating homogeneous Neumann
conditions are used on the top and bottom walls. A finite-difference approximation
with the usual five-point stencil is used to discretize the boundary value problem in
order to obtain a nonlinear system of equations. Upwinding is used for the divergence
(convective) terms and central differencing for the gradient (source) terms.

In these experiments, we emphasize the use of ANDERSON, MG or FAS, and
GSN. The solver combinations are listed in Table 6.5. The multilevel methods use a
simple series of structured grids, with the smallest being 5×5 and the largest 257×257.
With four fields per grid point, we have an overall system size of 264,196 unknowns.
In NEWT\K −MG, the Jacobian is rediscretized on each level. GSN is used as the
smoother for FAS and solves the four-component block problem corresponding to (6.2)
per grid point in a simple sweep through the processor local part of the domain.

The example, SNES ex19.c, can be run directly by using a default PETSc instal-
lation. The command line used for these experiments is

./ex19 -da_refine 6 -da_grid_x 5 -da_grid_y 5 -grashof 2e4 -lidvelocity 100 -prandtl 1.0

and the converged solution using these options is shown in Figure 6.5.
All linearized problems in the NEWT\K iteration are solved using GMRES with

geometric multigrid preconditioning to a relative tolerance of 10−8. There are five lev-
els, with Chebyshev-SOR smoothers on each level. For FAS, the smoother is GSN(5).
The coarse-level smoother is five iterations of NEWT\K-LU, chosen for robustness.
In the cases of ANDERSON−R (NEWT\K−MG) and FAS+(NEWT\K−MG), the
NEWT\K −MG step is damped by one half. Note that acting alone, this damping

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 555

Table 6.5 Solvers for the lid driven cavity problem.

Name Solver LPC NPC Side MG/FASSmooth. LS
(NEWT\K−MG) NEWT\K MG – – SOR BT

ANDERSON−R(NEWT\K−MG) ANDERSON MG NEWT\K R SOR –
FAS FAS – – – GSN –

NRICH−LFAS NRICH – FAS L GSN L2
ANDERSON−RFAS ANDERSON – FAS R GSN –

FAS ∗ (NEWT\K−MG) FAS/NEWT\K MG – – SOR/GSN BT
FAS+(NEWT\K−MG) FAS/NEWT\K MG – – SOR/GSN BT

Fig. 6.5 ux, uy, and temperature profiles for the lid driven cavity solution.

Table 6.6 ANDERSON−R (NEWT\K−MG) and (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
ANDERSON−R (NEWT\K−MG) 7.48 10 220 21 50 231 10

(NEWT\K−MG) 9.83 17 352 34 85 370 –

would cut the rate of convergence to linear with a rate constant 1
2 . The ideal step

size is recovered by the minimization procedure. NEWT\K−MG is undamped in all
other tests. In these experiments we emphasize the total number of V-cycles, linear
and nonlinear, since they dominate the runtime and contain the lion’s share of the
communication and floating-point operations.

In Figures 6.6 and 6.7 and Table 6.7 we show the convergence of FAS with
and without the acceleration of NRICH and ANDERSON. NRICH −L FAS takes
50 V-cycles, at the expense of three more fine-level function evaluations per itera-
tion. ANDERSON −R FAS reduces the number of V-cycles to 24 at the expense
In Table 6.6, we see that Newton’s method converges in 17 iterations, with 370
V-cycles. Using ANDERSON instead of a line search provides some benefit, as
ANDERSON − (NEWT\K − MG) takes 231 V-cycles and 10 iterations. of more
communication. Composed nonlinear methods are shown in Table 6.8. Multiplica-
tive composition consisting of FAS and NEWT\K−MG reduces the total number of
V-cycles to 130. Additive composition using the least-squares minimization is less
effective, taking 298 V-cycles. Note in Figure 6.8 that both the additive and multi-
plicative solvers show that combining FAS and NEWT\K–MG may speed solution,
with multiplicative combination being significantly more effective.

6.4. Tuning the Solvers to Obtain Convergence. We now show how the com-
posed and preconditioned solves may be tuned for more difficult nonlinearities when

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

556 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

0 2 4 6 8 10

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x
)‖

2

ANDERSON−R(NEWT\K−MG)

(NEWT\K−MG)

Fig. 6.6 ANDERSON−R (NEWT\K−MG) and (NEWT\K−MG) convergence.

0 1 2 3 4 5 6 7

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x
)‖

2

ANDERSON−RFAS
NRICH−LFAS

FAS

Fig. 6.7 ANDERSON−R FAS, NRICH−L FAS, and FAS convergence.

Table 6.7 ANDERSON−R FAS, NRICH−L FAS, and FAS results.

Solver T N. It L. It Func Jac PC NPC
ANDERSON−R FAS 1.91 24 0 447 83 166 24

NRICH−L FAS 3.20 50 0 1180 192 384 50
FAS 6.23 162 0 2382 377 754 –

the basic methods fail to converge using the same model problem. For Grashof number
Gr < 104 and Prandtl number Pr = 1.0, Newton’s method converges well:

lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 715.271
1 SNES Function norm 623.41
2 SNES Function norm 510.225
.
.
.

6 SNES Function norm 0.269179
7 SNES Function norm 0.00110921
8 SNES Function norm 1.12763e-09

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 8
Number of SNES iterations = 8

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 557

0 1 2 3 4 5 6 7 8 9

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x
)‖

2

FAS*(NEWT\K−MG)
FAS+(NEWT\K−MG)

Fig. 6.8 FAS ∗ (NEWT\K−MG) and FAS+ (NEWT\K−MG) convergence.

Table 6.8 FAS ∗ (NEWT\K−MG) and FAS+ (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
FAS ∗ (NEWT\K−MG) 4.01 5 80 103 45 125 –
FAS + (NEWT\K−MG) 8.07 10 197 232 90 288 –

For higher Grashof number, Newton’s method stagnates:

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -pc_type lu -snes_monitor_short
-snes_converged_reason

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 1132.29

.

.

.
29 SNES Function norm 580.937
30 SNES Function norm 580.899

It also fails with the standard continuation strategy from coarser meshes (not
shown). We next try nonlinear multigrid, in the hope that multiple updates from a
coarse solution are sufficient, using Gauss–Seidel as the nonlinear smoother:

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason
-snes_type fas -fas_levels_snes_type ngs -fas_levels_snes_max_it 6 -snes_max_it 25

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 513.02
3 SNES Function norm 216.721
4 SNES Function norm 85.949
5 SNES Function norm 108.24
6 SNES Function norm 207.469
.
.
.

22 SNES Function norm 131.866
23 SNES Function norm 114.817
24 SNES Function norm 71.4699
25 SNES Function norm 63.5413

However, the residual norm just jumps around and the method does not converge.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

558 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

We then accelerate the method with ANDERSON and obtain convergence:

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason
-snes_type anderson -npc_snes_max_it 1 -npc_snes_type fas -npc_fas_levels_snes_type ngs
-npc_fas_levels_snes_max_it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 345.592
3 SNES Function norm 155.476
4 SNES Function norm 70.2302
5 SNES Function norm 40.3618
6 SNES Function norm 29.3065
7 SNES Function norm 14.2497
8 SNES Function norm 4.80462
9 SNES Function norm 4.15985

10 SNES Function norm 2.13428
11 SNES Function norm 1.57717
12 SNES Function norm 0.60919
13 SNES Function norm 0.150496
14 SNES Function norm 0.0355709
15 SNES Function norm 0.00705481
16 SNES Function norm 0.00164509
17 SNES Function norm 0.000464835
18 SNES Function norm 6.02035e-05
19 SNES Function norm 1.11713e-05

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 19
Number of SNES iterations = 19

We can restore the convergence to a few iterates by increasing the power of the
nonlinear smoothers in FAS. We replace GSN by six iterations of Newton using the
default linear solver of GMRES plus ILU(0). Note that as a solver alone this does
not converge, but it performs very well as a smoother for FAS:

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason
-snes_type anderson -npc_snes_max_it 1 -npc_snes_type fas -npc_fas_levels_snes_type newtonls
-npc_fas_levels_snes_max_it 6 -npc_fas_levels_snes_linesearch_type basic
-npc_fas_levels_snes_max_linear_solve_fail 30 -npc_fas_levels_ksp_max_it 20

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 0.187669
2 SNES Function norm 0.0319743
3 SNES Function norm 0.00386815
4 SNES Function norm 2.24093e-05
5 SNES Function norm 5.38246e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
Number of SNES iterations = 5

Thus, we have demonstrated how one may experimentally add composed solvers
to move from complete lack of convergence to convergence with a small number of
iterations.

6.5. p-Laplacian. The regularized p-Laplacian formulation used for these exper-
iments is

−∇ ·
((

ε2 +
1

2
|∇u|2

)(p−2)/2

∇u

)
= c,

where ε = 10−5 is the regularization parameter and p the exponent of the Laplacian.
When p = 2, the p-Laplacian reduces to the Poisson equation. We consider the case
where p = 5 and c = 0.1. The domain is [−1, 1] × [−1, 1] and the initial guess is
u0(x, y) = xy(1−x2)(1−y2). The grid used is 385×385, leading to a total of 148,225
unknowns in the system. The initial and converged solutions are shown in Figure 6.9.
The example, SNES ex15.c, can be run directly using a default PETSc installation.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 559

Fig. 6.9 Initial and converged solutions to the p = 5 p-Laplacian.

The command line used for these experiments is

./ex15 -da_refine 7 -da_overlap 6 -p 5.0 -lambda 0.0 -source 0.1

Table 6.9 Solvers for the p-Laplacian problem. “SubPC” denotes the linear solver at the block level.

Name Solver LPC NPC Side SubPC LS
NEWT\K− ASM NEWT\K ASM – – LU BT

QN QN – – – CP
RAS RAS – – – LU CP

RAS + (NEWT\K−ASM) RAS/NEWT\K ASM – – LU BT
RAS ∗ (NEWT\K−ASM) RAS/NEWT\K ASM – – LU BT

ASPIN NEWT\K – NASM L LU BT
NRICH−L (RAS) NRICH – RAS L LU CP

QN−L (RAS) QN – RAS L LU CP

We concentrate on additive Schwarz and QN methods, as listed in Table 6.9.
We will show that combination has distinct advantages. This problem has difficult
local nonlinearity that may impede global solvers, so local solvers should be an efficient
remedy. We also consider a composition of Newton’s method with RAS and nonlinear
preconditioning of Newton’s method in the form of ASPIN. NASM, RAS, and the
linear additive Schwarz method (ASM) all have single subdomains on each processor
that overlap each other by six grid points. We use the L-BFGS variant of QN, as
explained in section 4.5. Note that the function evaluation is inexpensive for this
problem and methods that use many evaluations perform well. The advantage of
such methods is exacerbated by the large number of iterations required by Newton’s
method. All the NEWT\K solvers use an inner GMRES iteration with a relative
tolerance of 10−5. GMRES for ASPIN is set to have an inner tolerance of 10−3.

Table 6.10 contains results for the uncomposed solvers. The default solver,
NEWT\K−ASM, takes a large number of outer Newton iterations and inner GMRES−
ASM iterations. In addition, the line search is consistently activated, causing an av-
erage of more than three function evaluations per iteration. Unpreconditioned QN
is able to converge to the solution efficiently and will be hard to beat. QN stores
up to 10 previous solutions and residuals. RAS set to do one local Newton iteration

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

560 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

Table 6.10 QN, RAS, and (NEWT\K− ASM) results.

Solver T N. It L. It Func Jac PC NPC
QN 12.24 2960 0 5921 – – –

RAS 12.94 352 0 1090 352 352 –
(NEWT\K− ASM) 34.57 124 3447 423 124 3574 –

0 5 10 15 20 25 30 35

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x
)‖

2

QN
RAS
(NEWT\K−ASM)

Fig. 6.10 QN, RAS, and (NEWT\K− ASM) convergence.

Table 6.11 RAS ∗ (NEWT\K− ASM) and RAS+ (NEWT\K−ASM) results.

Solver T N. It L. It Func Jac PC NPC
RAS ∗ (NEWT\K−ASM) 9.69 24 750 142 48 811 –
RAS + (NEWT\K−ASM) 12.78 33 951 232 66 1023 –

per subdomain per outer iteration proves to be efficient on its own after some initial
problems, as shown in Figure 6.10.

In Table 6.11 and Figure 6.11, we show how Newton’s method may be dramatically
improved by composition with RAS and NASM. The additive composition reduces
the number of outer iterations substantially. The multiplicative composition is even
more effective, reducing the number of outer iterations by a factor of 5 and decreasing
runtime by a factor of around 4.

The results for left-preconditioned methods are shown in Table 6.12 and Fig-
ure 6.12. ASPIN is competitive, taking 13 iterations and having performance charac-
teristics similar to those of the multiplicative composition solver listed in Table 6.11.
The subdomain solvers for ASPIN are set to converge to a relative tolerance of 10−3

or 20 inner iterations. Underresolving the local problems provides an inadequate
search direction and causes ASPIN to stagnate. The linear GMRES iteration is also
converged to 10−3.

The most impressive improvements can be achieved by using a RAS as a nonlinear
preconditioner. Simple NRICH acceleration does not provide much benefit compared
with raw RAS with respect to outer iterations, and the preconditioner applications in
the line search cause significant overhead. However, QN using inexact RAS as the left-

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 561

0 2 4 6 8 10 12 14

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x
)‖

2

RAS*(NEWT\K−ASM)
RAS+(NEWT\K−ASM)

Fig. 6.11 RAS ∗ (NEWT\K− ASM) and RAS+ (NEWT\K−ASM) convergence.

Table 6.12 QN−L RAS , ASPIN, and NRICH−L RAS results.

Solver T N. It L. It Func Jac PC NPC
QN−L RAS 7.02 92 0 410 185 185 185

ASPIN 9.30 13 332 307 179 837 19
NRICH−L RAS 32.10 308 0 1889 924 924 924

0 5 10 15 20 25 30 35

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x
)‖

2

QN−LRAS

ASPIN
NRICH−LRAS

Fig. 6.12 QN−L RAS , ASPIN, and NRICH−L RAS convergence.

preconditioned residual proves to be the most efficient solver for this problem, taking
185 Newton iterations per subdomain. Both NRICH and QN stagnate if the origi-
nal residual is used in the line search instead of the preconditioned one. Subdomain
QN methods [48] have been proposed before, but were built using block approximate

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

562 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

Jacobian inverses instead of working on the preconditioned system like ASPIN. As
implemented here, QN−L RAS and ASPIN both construct left-preconditioned resid-
uals and approximate preconditioned Jacobian constructions; both end up being very
efficient.

7. Conclusion. The combination of solvers using nonlinear composition, when
applied carefully, may greatly improve the convergence properties of nonlinear solvers.
Hierarchical and multilevel inner solvers allow for high arithmetic intensity and low
communication algorithms, making nonlinear composition a good option for extreme-
scale nonlinear solvers.

Our experimentation, in this article and elsewhere, has shown that what works
best when using nonlinear composition varies from problem to problem. Nonlinear
composition introduces a slew of additional solver parameters at multiple levels of the
hierarchy that may be tuned for optimal performance and robustness. A particular
problem may be amenable to a simple solver, such as NCG, or to a combination of
multilevel solvers, such as FAS ∗ (NEWT\K −MG). The implementation in PETSc
[3] allows for considerable flexibility in user choice of solver compositions.

Admittedly, we have been fairly conservative in the scope of our solver combina-
tions. Our almost-complete restriction to combinations of a globalized method and
a decomposition method is somewhat artificial in the nonlinear case. Without this
restriction, however, the combinatorial explosion of potential methods would have
quickly made the scope of this article untenable. Users may experiment, for their
particular problem, with combinations of some number of iterations of arbitrary com-
binations of nonlinear solvers, with nesting much deeper than we explore here.

The use of nonlinear preconditioning allows for solvers that are more robust to
difficult nonlinear problems. While effective linear preconditioners applied to the
Jacobian inversion problem may speed the convergence of the inner solves, lack of
convergence of the outer Newton’s method may doom the solve. With nonlinear
preconditioning, the inner and outer treatment of the nonlinear problem allows for
very rapid solution. Nonlinear preconditioning and composition solvers allow for both
efficiency and robustness gains, and the widespread adoption of these techniques would
reap major benefits for computational science.

Acknowledgment. We thank Jed Brown for many meaningful discussions, sug-
gestions, and sample code.

REFERENCES

[1] Advanced Micro Devices, AMD Opteron 6200 Series Quick Reference Guide, 2012.
[2] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput.

Mach., 12 (1965), pp. 547–560.
[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,

W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and

H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11, Revision 3.5, Argonne National
Laboratory, 2014.

[4] P. Birken and A. Jameson, On nonlinear preconditioners in Newton-Krylov methods for
unsteady flows, Internat. J. Numer. Methods Fluids, 62 (2010), pp. 565–573.

[5] J. H. Bramble, Multigrid Methods, Longman Scientific and Technical, Essex, UK, 1993.
[6] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31

(1977), pp. 333–390.
[7] A. Brandt, Multigrid Techniques: 1984 Guide with Applications for Fluid Dynamics, Tech.

Rep. GMD-Studien Nr. 85, Gesellschaft für Mathematik und Dataenverarbeitung, Bonn,
Germany, 1984.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 563

[8] A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in Multilevel
Optimization and VLSICAD, Kluwer Academic, Norwell, MA, 2003, pp. 1–69.

[9] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM,
Philadelphia, 2000.

[10] J. Brown and P. Brune, Low-rank quasi-Newton updates for robust Jacobian lagging in
Newton-type methods, in Proceedings of the International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering, ANS, La Grange
Park, IL, 2013, pp. 2554–2565.

[11] P. N. Brown and A. C. Hindmarsh, Matrix-free methods for stiff systems of ODEs, SIAM J.
Numer. Anal., 23 (1986), pp. 610–638.

[12] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton–Krylov algorithms, SIAM
J. Optim., 4 (1994), pp. 297–330.

[13] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.
Comp., 19 (1965), pp. 577–593.

[14] R. Byrd, J. Nocedal, and R. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Math. Programming, 63 (1994), pp. 129–156.

[15] X.-C. Cai, Nonlinear overlapping domain decomposition methods, in Domain Decomposition
Methods in Science and Engineering XVIII, Lecture Notes in Comput. Sci. 70, Springer,
Berlin, 2009, pp. 217–224.

[16] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J.
Sci. Comput., 24 (2002), pp. 183–200.

[17] X.-C. Cai and X. Li, Inexact Newton methods with restricted additive Schwarz based nonlinear
elimination for problems with high local nonlinearity, SIAM J. Sci. Comput., 33 (2011),
pp. 746–762.

[18] N. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite
element code I: In one dimension, SIAM J. Sci. Comput., 19 (1998), pp. 728–765.

[19] T. F. Chan and K. R. Jackson, Nonlinearly preconditioned Krylov subspace methods for
discrete Newton algorithms, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 533–542.

[20] P. Cresta, O. Allix, C. Rey, and S. Guinard, Nonlinear localization strategies for domain
decomposition methods: Application to post-buckling analyses, Comput. Methods Appl.
Mech. Engrg., 196 (2007), pp. 1436–1446.

[21] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global conver-
gence property, SIAM J. Optim., 10 (1999), pp. 177–182.

[22] H. De Sterck, Steepest descent preconditioning for nonlinear GMRES optimization, Numer.
Linear Algebra Appl., 20 (2013), pp. 453–471.

[23] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[24] J. E. Dennis, Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev.,
19 (1977), pp. 46–89.

[25] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[26] P. Deuflhard, R. Freund, and A. Walter, Fast secant methods for the iterative solution of
large nonsymmetric linear systems, IMPACT Comput. Sci. Engrg., 2 (1990), pp. 244–276.

[27] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.

[28] V. Eyert, A comparative study on methods for convergence acceleration of iterative vector
sequences, J. Comput. Phys., 124 (1996), pp. 271–285.

[29] H.-r. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration,
Numer. Linear Algebra Appl., 16 (2009), pp. 197–221.

[30] R. Fletcher, Practical Methods of Optimization, Volume 1, Wiley, New York, 1987.
[31] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Comput. J.,

7 (1964), pp. 149–154.
[32] A. A. Goldstein, On steepest descent, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965),

pp. 147–151.
[33] W. Hackbusch, Comparison of different multi-grid variants for nonlinear equations, Z. Angew.

Math. Mech., 72 (1992), pp. 148–151.
[34] V. E. Henson, Multigrid methods for nonlinear problems: An overview, Proc. SPIE, 5016

(2003), pp. 36–48.
[35] M. R. Hestenes and E. Steifel, Methods of conjugate gradients for solving linear systems,

J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.
[36] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci. Engrg., 9 (2007), pp. 90–

95.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

564 P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU

[37] F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inex-
act Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., 204
(2005), pp. 666–691.

[38] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
1995.

[39] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM
J. Numer. Anal., 35 (1998), pp. 508–523.

[40] H. Klie and M. F. Wheeler, Nonlinear Krylov-Secant Solvers, Tech. Rep., Department of
Mathematics and Institute of Computational Engineering and Sciences, University of Texas
at Austin, 2006.

[41] D. A. Knoll and P. R. McHugh, Enhanced nonlinear iterative techniques applied to a
nonequilibrium plasma flow, SIAM J. Sci. Comput., 19 (1998), pp. 291–301.

[42] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[43] P. Ladevèze, J.-C. Passieux, and D. Néron, The LATIN multiscale computational method
and the proper generalized decomposition, Comput. Methods Appl. Mech. Engrg., 199
(2010), pp. 1287–1296.

[44] P. Ladevèze and J. Simmonds, Nonlinear Computational Structural Mechanics: New Ap-
proaches and Non-incremental Methods of Calculation, Mechanical Engineering Series,
Springer, New York, 1999.

[45] P. J. Lanzkron, D. J. Rose, and J. T. Wilkes, An analysis of approximate nonlinear elim-
ination, SIAM J. Sci. Comput., 17 (1996), pp. 538–559.

[46] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Programming, 45 (1989), pp. 503–528.

[47] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated Picard method
for nonlinear systems related to variably saturated flow, Adv. Water Res., 38 (2012), pp. 92–
101.

[48] J. M. Mart́ınez, SOR-secant methods, SIAM J. Numer. Anal., 31 (1994), pp. 217–226.
[49] H. Matthies and G. Strang, The solution of nonlinear finite element equations, Internat. J.

Numer. Methods Engrg., 14 (1979), pp. 1613–1626.
[50] S. G. Nash, A multigrid approach to discretized optimization problems, Optim. Methods Softw.,

14 (2000), pp. 99–116.
[51] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980),

pp. 773–782.
[52] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
[53] C. W. Oosterlee and T. Washio, Krylov subspace acceleration of nonlinear multigrid with

application to recirculating flow, SIAM J. Sci. Comput., 21 (2000), pp. 1670–1690.
[54] E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, Rev.

Française Informat. Recherche Opérationnelle, 3 (1969), pp. 35–43.
[55] P. Pulay, Convergence acceleration of iterative sequences: The case of SCF iteration, Chem.

Phys. Lett., 73 (1980), pp. 393–398.
[56] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-

tions, Oxford Science Publications, Oxford, UK, 1999.
[57] P. Ramachandran and G. Varoquaux,Mayavi: 3D Visualization of Scientific Data, Comput.

Sci. Engrg., 13 (2011), pp. 40–51.
[58] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14

(1993), pp. 461–469.
[59] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[60] M. H. Scott and G. L. Fenves, A Krylov subspace accelerated Newton algorithm, in Pro-

ceedings of the 2003 ASCE Structures Congress, L. N. Lowes and G. R. Miller, eds., 2003,
pp. 45–55.

[61] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math.
Comp., 24 (1970), pp. 647–656.

[62] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method without the Agonizing
Pain, Tech. Rep., Carnegie Mellon University, Pittsburgh, 1994.

[63] B. Smith, Domain decomposition methods for partial differential equations, ICASE LARC
Interdisciplinary Ser. Sci. Engrg., 4 (1997), pp. 225–244.

[64] B. F. Smith, P. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cam-
bridge, UK, 1996.

[65] B. F. Smith and X. Tu, Domain decomposition, in Encyclopedia of Applied and Computational
Mathematics, B. Engquist, ed., Springer, New York, 2015.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS 565

[66] M. Smooke and R. Mattheij, On the solution of nonlinear two-point boundary value problems
on successively refined grids, Appl. Numer. Math., 1 (1985), pp. 463–487.

[67] A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algorithms and Theory,
Springer Ser. Comput. Math. 34, B. Engquist, ed., Springer, New York, 2005.

[68] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego,
CA, 2001.

[69] R. S. Tuminaro, H. F. Walker, and J. N. Shadid, On backtracking failure in Newton–
GMRES methods with a demonstration for the Navier–Stokes equations, J. Comput. Phys.,
180 (2002), pp. 549–558.

[70] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer.
Anal., 49 (2011), pp. 1715–1735.

[71] H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated fixed-point iteration for
solution of variably saturated flow, in Proceedings of the 18th International Conference on
Water Resources, J. Carrera, ed., Barcelona, 2010.

[72] T. Washio and C. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes,
Electron. Trans. Numer. Anal., 6 (1997), pp. 271–290.

[73] P. Wesseling, An Introduction to Multigrid Methods, R. T. Edwards, Philadelphia, 2004.
[74] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–235.
[75] P. Wriggers, Nonlinear Finite Element Methods, Springer, New York, 2008.

D
ow

nl
oa

de
d

12
/1

9/
16

 to
 1

29
.2

37
.4

6.
99

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

