151 research outputs found

    Gold Nanoparticle Uptake in Tumor Cells: Quantification and Size Distribution by sp-ICPMS

    Get PDF
    Gold nanoparticles (AuNPs) are increasingly studied for cancer treatment purposes, as they can potentially improve both control and efficiency of the treatment. Intensive research is conducted in vitro on rodent and human cell lines to objectify the gain of combining AuNPs with cancer treatment and to understand their mechanisms of action. However, using nanoparticles in such studies requires thorough knowledge of their cellular uptake. In this study, we optimized single particle ICPMS (sp-ICPMS) analysis to qualify and quantify intracellular AuNP content after exposure of in vitro human breast cancer cell lines. To this aim, cells were treated with an alkaline digestion method with 5% TMAH, allowing the detection of gold with a yield of 97% on average. Results showed that under our experimental conditions, the AuNP size distribution appeared to be unchanged after internalization and that the uptake of particles depended on the cell line and on the exposure duration. Finally, the comparison of the particle numbers per cell with the estimates based on the gold masses showed excellent agreement, confirming the validity of the sp-ICPMS particle measurements in such complex samples

    Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    Get PDF
    International audienceTiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients

    La construction du site pédagogique numérique CHIMACTIV : analyse d'une coopération réussie entre enseignants

    Get PDF
    International audienceUn collectif d'enseignants inter-établissements s'est organisé pour concevoir et co-construire un site pédagogique numérique. L'équipe de conception initiale a fortement coopéré (au sein de chaque établissement et entre établissements) et interagi étroitement avec différents acteurs (cellules TICE, étudiants, prestataires externes) pour aboutir à une version bilingue du site. La volonté d'élargir et de diversifier le champ des utilisateurs (enseignants et étudiants) a conduit à ouvrir ce collectif à de nouveaux enseignants, afin de faire évoluer le site et compléter son contenu. Après une analyse de l'organisation mise en place, nous discuterons des obstacles à surmonter, des facteurs de réussite et du ressenti des enseignants ayant vécu cette coopération, avant de conclure sur ce qu'apporte l'aspect « numérique » des ressources développées dans la coopération entre enseignants sur la base de notre expérience

    Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation

    Get PDF
    Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas) was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL), and is also well suited to large-scale compound manufacturing in the pharmaceutical industry

    Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

    Get PDF
    LetterInternational audienceThe Périgord black truffle (Tuber melanosporumTuber\ melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporumT.\ melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolorLaccaria\ bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporumT.\ melanosporum, which at \sim125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for \sim58% of the genome. In contrast, this genome only contains \sim7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporumT.\ melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolorL.\ bicolor and T. melanosporumT.\ melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis -'the symbiosis toolbox'- evolved along different ways in ascomycetes and basidiomycete

    A New Strategy to Generate Functional Insulin-Producing Cell Lines by Somatic Gene Transfer into Pancreatic Progenitors

    Get PDF
    BACKGROUND: There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. METHODS AND FINDINGS: In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. CONCLUSIONS: Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems
    corecore