478 research outputs found

    Binary spinning black hole Hamiltonian in canonical center-of-mass and rest-frame coordinates through higher post-Newtonian order

    Full text link
    The recently constructed Hamiltonians for spinless binary black holes through third post-Newtonian order and for spinning ones through formal second post-Newtonian order, where the spins are counted of zero post-Newtonian order, are transformed into fully canonical center-of-mass and rest-frame variables. The mixture terms in the Hamiltonians between center-of-mass and rest-frame variables are in accordance with the relation between the total linear momentum and the center-of-mass velocity as demanded by global Lorentz invariance. The various generating functions for the center-of-mass and rest-frame canonical variables are explicitly given in terms of the single-particle canonical variables. The no-interaction theorem does not apply because the world-line condition of Lorentz covariant position variables is not imposed.Comment: 18 pages, no figure

    Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Get PDF
    Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 millimeter. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.Comment: 26 pages, submitted to Proc. of ASTROCON-IV conference (Princeton Univ., NJ, 2007

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data

    Full text link
    We analytically work out the perturbation induced by the Kehagias-Sfetsos (KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long distances on the two-body range for a pair of test particles A and B orbiting the same mass M. We apply our results to the most recently obtained range-residuals \delta\rho for some planets of the solar system (Mercury, Mars, Saturn) ranged from the Earth to effectively constrain the dimensionsless KS parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury), \psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds are tighter than other ones existing in literature by several orders of magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version matching the one at press in International Journal of Modern Physics D (IJMPD

    Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers

    Get PDF
    General relativistic deflection of light by mass, dipole, and quadrupole moments of gravitational field of a moving massive planet in the Solar system is derived. All terms of order 1 microarcsecond are taken into account, parametrized, and classified in accordance with their physical origin. We calculate the instantaneous patterns of the light-ray deflections caused by the monopole, the dipole and the quadrupole moments, and derive equations describing apparent motion of the deflected position of the star in the sky plane as the impact parameter of the light ray with respect to the planet changes due to its orbital motion. The present paper gives the physical interpretation of the observed light-ray deflections and discusses the observational capabilities of the near-future optical (SIM) and radio (SKA) interferometers for detecting the Doppler modulation of the radial deflection, and the dipolar and quadrupolar light-ray bendings by the Jupiter and the Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.

    Uniqueness of collinear solutions for the relativistic three-body problem

    Full text link
    Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019 (2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove the uniqueness of the configuration for given system parameters (the masses and the end-to-end length). First, we show that the equation determining the distance ratio among the three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at most three positive roots, which apparently provide three cases of the distance ratio. It is found, however, that, even for such cases, there exists one physically reasonable root and only one, because the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian approximation and are thus discarded. This means that, especially for the restricted three-body problem, exactly three positions of a third body are true even at the post-Newtonian order. They are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that, for the same masses and full length, the angular velocity of the post-Newtonian collinear configuration is smaller than that for the Newtonian case. Provided that the masses and angular rate are fixed, the relativistic end-to-end length is shorter than the Newtonian one.Comment: 18 pages, 1 figure; typos corrected, text improved; accepted by PR

    Note on the generalized Hansen and Laplace coefficients

    Full text link
    Recently, Breiter et al (2004) reported the computation of Hansen coefficients Xkγ,mX_k^{\gamma,m} for non integer values of γ\gamma. In fact, the Hansen coefficients are closely related to the Laplace bs(m)b_{s}^{(m)}, and generalized Laplace coefficients bs,r(m)b_{s,r}^{(m)} (Laskar and Robutel, 1995) that do not require s,rs,r to be integers. In particular, the coefficients X_0^{\g,m} have very simple expressions in terms of the usual Laplace coefficients b_{\g+2}^{(m)}, and all their properties derive easily from the known properties of the Laplace coefficients.Comment: 9/11/200

    Accelerating relativistic reference frames in Minkowski space-time

    Full text link
    We study accelerating relativistic reference frames in Minkowski space-time under the harmonic gauge. It is well-known that the harmonic gauge imposes constraints on the components of the metric tensor and also on the functional form of admissible coordinate transformations. These two sets of constraints are equivalent and represent the dual nature of the harmonic gauge. We explore this duality and show that the harmonic gauge allows presenting an accelerated metric in an elegant form that depends only on two harmonic potentials. It also allows reconstruction of the spatial structure of the post-Galilean coordinate transformation functions relating inertial and accelerating frames. The remaining temporal dependence of these functions together with corresponding equations of motion are determined from dynamical conditions, obtained by constructing the relativistic proper reference frame of an accelerated test particle. In this frame, the effect of external forces acting on the observer is balanced by the fictitious frame-reaction force that is needed to keep the test particle at rest with respect to the frame, conserving its relativistic linear momentum. We find that this approach is sufficient to determine all the terms of the coordinate transformation. The same method is then used to develop the inverse transformations. The resulting post-Galilean coordinate transformations extend the Poincar\'e group on the case of accelerating observers. We present and discuss the resulting coordinate transformations, relativistic equations of motion, and the structure of the metric tensors corresponding to the relativistic reference frames involved.Comment: revtex4, 21 page
    corecore