13 research outputs found

    Genotype-phenotype associations in a large PTEN Hamartoma Tumor Syndrome (PHTS) patient cohort

    Get PDF
    Background: Pathogenic PTEN germline variants cause PTEN Hamartoma Tumor Syndrome (PHTS), a rare disease with a variable genotype and phenotype. Knowledge about these spectra and genotype-phenotype associations could help diagnostics and potentially lead to personalized care. Therefore, we assessed the PHTS genotype and phenotype spectrum in a large cohort study. Methods: Information was collected of 510 index patients with pathogenic or likely pathogenic (LP/P) PTEN variants (n = 467) or variants of uncertain significance. Genotype-phenotype associations were assessed using logistic regression analyses adjusted for sex and age.Results: At time of genetic testing, the majority of children (n = 229) had macrocephaly (81%) or developmental delay (DD, 61%), and about half of the adults (n = 238) had cancer (51%), macrocephaly (61%), or cutaneous pathology (49%). Across PTEN, 268 LP/P variants were identified, with exon 5 as hotspot. Missense variants (n = 161) were mainly located in the phosphatase domain (PD, 90%) and truncating variants (n = 306) across all domains. A trend towards 2 times more often truncating variants was observed in adults (OR = 2.3, 95%CI = 1.5-3.4) and patients with cutaneous pathology (OR = 1.6, 95%CI = 1.1-2.5) or benign thyroid pathology (OR = 2.0, 95%CI = 1.1-3.5), with trends up to 2-4 times more variants in PD. Whereas patients with DD (OR = 0.5, 95%CI = 0.3-0.9) or macrocephaly (OR = 0.6, 95%CI = 0.4-0.9) had about 2 times less often truncating variants compared to missense variants. In DD patients these missense variants were often located in domain C2.Conclusion: The PHTS phenotypic diversity may partly be explained by the PTEN variant coding effect and the combination of coding effect and domain. PHTS patients with early-onset disease often had missense variants, and those with later-onset disease often truncating variants

    RADX Gene Variant May Predispose to Familial Asperger Syndrome

    No full text
    Asperger syndrome (AS) is a pervasive developmental disorder characterized by general impairment in socialization, stereotypical behavior, defective adaptation to the social context usually without intellectual disability, and some high functioning areas related to memory and mathematics. Clinical criteria are not well defined and the etiology is heterogeneous and mostly unknown. Like in typical autism spectrum disorders (ASD), the genetic background plays a crucial role in AS, and often an almost mendelian segregation can be observed in some families. We performed a whole exome sequencing (WES) in three relatives of a family with vertical transmission of AS-ASD to identify variants in candidate genes segregating with the phenotype. Variant p.(Cys834Ser) in the RADX gene was the only one segregating among all the affected family members. This gene encodes a single-strand DNA binding factor, which mediates the recruitment of genome maintenance proteins to sites of replication stress. Replication stress and genome instability have been reported recently in neural progenitor cells derived from ASD patients, leading to a disruption of long neural genes involved in cell–cell adhesion and migration. We propose RADX as a new gene that when mutated could represent a predisposing factor to AS-ASD

    <i>RADX</i> Gene Variant May Predispose to Familial Asperger Syndrome

    No full text
    Asperger syndrome (AS) is a pervasive developmental disorder characterized by general impairment in socialization, stereotypical behavior, defective adaptation to the social context usually without intellectual disability, and some high functioning areas related to memory and mathematics. Clinical criteria are not well defined and the etiology is heterogeneous and mostly unknown. Like in typical autism spectrum disorders (ASD), the genetic background plays a crucial role in AS, and often an almost mendelian segregation can be observed in some families. We performed a whole exome sequencing (WES) in three relatives of a family with vertical transmission of AS-ASD to identify variants in candidate genes segregating with the phenotype. Variant p.(Cys834Ser) in the RADX gene was the only one segregating among all the affected family members. This gene encodes a single-strand DNA binding factor, which mediates the recruitment of genome maintenance proteins to sites of replication stress. Replication stress and genome instability have been reported recently in neural progenitor cells derived from ASD patients, leading to a disruption of long neural genes involved in cell–cell adhesion and migration. We propose RADX as a new gene that when mutated could represent a predisposing factor to AS-ASD

    Autoimmune Hemolytic Anemia and Immune Thrombocytopenia as Unusual Presentations of Childhood Hodgkin Lymphoma: A Case Report and Review of the Literature

    No full text
    We discuss an unusual clinical presentation of childhood Hodgkin lymphoma; a 16-year-old girl was referred for Coombs-positive severe anemia, thrombocytopenia, and asymptomatic anterior mediastinal mass. Bone marrow examination showed no evidence of neoplastic disease. Biopsy of the mass was possible only after administration of both intravenous immunoglobulins and steroids resulting in a prompt rise of the platelet count and partial hemoglobin level stabilization. The identification of this clinical picture as a possible complication of an underlying Hodgkin lymphoma presents difficulties in diagnosis and management of the primary condition

    RADX Gene Variant May Predispose to Familial Asperger Syndrome

    No full text
    Asperger syndrome (AS) is a pervasive developmental disorder characterized by general impairment in socialization, stereotypical behavior, defective adaptation to the social context usually without intellectual disability, and some high functioning areas related to memory and mathematics. Clinical criteria are not well defined and the etiology is heterogeneous and mostly unknown. Like in typical autism spectrum disorders (ASD), the genetic background plays a crucial role in AS, and often an almost mendelian segregation can be observed in some families. We performed a whole exome sequencing (WES) in three relatives of a family with vertical transmission of AS-ASD to identify variants in candidate genes segregating with the phenotype. Variant p.(Cys834Ser) in the RADX gene was the only one segregating among all the affected family members. This gene encodes a single-strand DNA binding factor, which mediates the recruitment of genome maintenance proteins to sites of replication stress. Replication stress and genome instability have been reported recently in neural progenitor cells derived from ASD patients, leading to a disruption of long neural genes involved in cell-cell adhesion and migration. We propose RADX as a new gene that when mutated could represent a predisposing factor to AS-ASD

    CRLF2 overexpression identifies an unfavourable subgroup of adult B-cell precursor acute lymphoblastic leukemia lacking recurrent genetic abnormalities

    No full text
    Background: A deregulated CRLF2 (d-CRLF2) expression was described in B-cell acute lymphoblastic leukemia without recurrent fusion genes (B-NEG ALL). While the role of d-CRLF2 in children has been extensively described, little is known about its role and impact in adult ALL. Methods: Expression levels of CRLF2 were evaluated by quantitative real-time PCR in 102 newly-diagnosed adult B-NEG ALL and correlated with the clinico-biological characteristics and outcome. Incidence and clinical impact of the P2RY8/CRLF2 transcript was also assessed. Results: High CRLF2 levels, as continuous variable, were significantly associated with hyperleucocytosis (p = 0.0002) and thrombocytopenia (p = 0.005); when a cut-point at \u3b4Ct 64 8 was applied, 35 cases (34.3%), mostly males (80%), proved positive for CRLF2 expression. High CRLF2 levels, as continuous or categorical variable, were associated with a worse disease-free (p = 0.003 and p = 0.015) and overall survival (p = 0.017 and 0.0038). Furthermore, when CRLF2 was analyzed as a categorical variable, a high statistical association was found with IKZF1 deletion and mutations in the JAK/STAT pathway (p = 0.001 and p &lt; 0.0001, respectively). Finally, the P2RY8/CRLF2 transcript, identified in 8/102 patients (7.8%), was associated with a poor outcome. Conclusions: In adult B-NEG ALL, high CRLF2 expression is associated with distinct clinico-biological features and an unfavourable prognosis in both univariate and multivariate analysis; similarly, P2RY8/CRLF2 positivity correlates with a poor outcome. The quantification of CRLF2 is an important prognostic marker in adult B-lineage ALL without known genetic lesions
    corecore