7 research outputs found

    Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure

    Get PDF
    Tropical forests are currently experiencing large-scale structural changes, including an increase in liana abundance and biomass. Higher liana abundance results in reduced tree growth and increased tree mortality, possibly playing an important role in the global carbon cycle. Despite the large amount of data currently available on lianas, there are not many quantitative studies on the influence of lianas on the vertical structure of the forest. We study the potential of terrestrial laser scanning (TLS) in detecting and quantifying changes in forest structure after liana cutting using a small scale removal experiment in two plots (removal plot and non-manipulated control plot) in a secondary forest in Panama. We assess the structural changes by comparing the vertical plant profiles and Canopy Height Models (CHMs) between pre-cut and post-cut scans in the removal plot. We show that TLS is able to detect the local structural changes in all the vertical strata of the plot caused by liana removal. Our study demonstrates the reproducibility of the TLS derived metrics for the same location confirming the applicability of TLS for continuous monitoring of liana removal plots to study the long-term impacts of lianas on forest structure. We therefore recommend to use TLS when implementing new large scale liana removal experiments, as the impact of lianas on forest structure will determine the aboveground competition for light between trees and lianas, which has important implications for the global carbon cycle

    Lianas in silico, ecological insights from a model of structural parasitism

    Get PDF
    Tropical forests are a critical component of the Earth system, storing half of the global forest carbon stocks and accounting for a third of terrestrial photosynthesis. Lianas are structural parasites that can substantially reduce the carbon sequestration capacity of these forests. Simulations of this peculiar growth form have only recently started and a single vegetation model included lianas so far. In this work we present a new liana implementation within the individual based model Formind. Initial tests indicate high structural realism both horizontal and vertical. In particular, we benchmarked the model against empirical observations of size distribution, mean liana cluster size and vertical leaf distribution for the Paracou site in French Guiana. Our model predicted a reduction of above-ground biomass between 10% for mature stands to 45% for secondary plots upon inclusion of lianas in the simulations. The reduced biomass was the result of a lower productivity due to a combination of lower tree photosynthesis and high liana respiration. We evaluated structural metrics (LAI, basal area, mean tree-height) and carbon fluxes (GPP, respiration) by comparing simulations with and without lianas. At the equilibrium, liana productivity was 1.9tC ha y or 23% of the total GPP and the forest carbon stocks were between 5% and 11% lower in simulations with lianas. We also highlight the main strengths and limitations of this new approach and propose new field measurements to further the understanding of liana ecology in a modelling framework

    Modeling the Impact of Liana Infestation on The Demography and Carbon Cycle of Tropical Forests

    Get PDF
    There is mounting empirical evidence that lianas affect the carbon cycle of tropical forests. However, no single vegetation model takes into account this growth form, although such efforts could greatly improve the predictions of carbon dynamics in tropical forests. In this study, we incorporated a novel mechanistic representation of lianas in a dynamic global vegetation model (the Ecosystem Demography Model). We developed a liana‐specific plant functional type and mechanisms representing liana–tree interactions (such as light competition, liana‐specific allometries, and attachment to host trees) and parameterized them according to a comprehensive literature meta‐analysis. We tested the model for an old‐growth forest (Paracou, French Guiana) and a secondary forest (Gigante Peninsula, Panama). The resulting model simulations captured many features of the two forests characterized by different levels of liana infestation as revealed by a systematic comparison of the model outputs with empirical data, including local census data from forest inventories, eddy flux tower data, and terrestrial laser scanner‐derived forest vertical structure. The inclusion of lianas in the simulations reduced the secondary forest net productivity by up to 0.46 tC ha−1 year−1, which corresponds to a limited relative reduction of 2.6% in comparison with a reference simulation without lianas. However, this resulted in significantly reduced accumulated above‐ground biomass after 70 years of regrowth by up to 20 tC/ha (19% of the reference simulation). Ultimately, the simulated negative impact of lianas on the total biomass was almost completely cancelled out when the forest reached an old‐growth successional stage. Our findings suggest that lianas negatively influence the forest potential carbon sink strength, especially for young, disturbed, liana‐rich sites. In light of the critical role that lianas play in the profound changes currently experienced by tropical forests, this new model provides a robust numerical tool to forecast the impact of lianas on tropical forest carbon sinks

    An introduction to modelling structural parasitism in tropical forests

    No full text
    corecore