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Abstract 
There is mounting empirical evidence that lianas affect the carbon cycle of tropical forests. However, no single 

vegetation model takes into account this growth form, although such efforts could greatly improve the 

predictions of carbon dynamics in tropical forests. In this study, we incorporated a novel mechanistic 

representation of lianas in a dynamic global vegetation model (the Ecosystem Demography Model). We 

developed a liana‐specific plant functional type and mechanisms representing liana–tree interactions (such as 

light competition, liana‐specific allometries, and attachment to host trees) and parameterized them according to 

a comprehensive literature meta‐analysis. We tested the model for an old‐growth forest (Paracou, French 

Guiana) and a secondary forest (Gigante Peninsula, Panama). The resulting model simulations captured many 

features of the two forests characterized by different levels of liana infestation as revealed by a systematic 

comparison of the model outputs with empirical data, including local census data from forest inventories, eddy 

flux tower data, and terrestrial laser scanner‐derived forest vertical structure. The inclusion of lianas in the 

simulations reduced the secondary forest net productivity by up to 0.46 tC ha−1 year−1, which corresponds to a 

limited relative reduction of 2.6% in comparison with a reference simulation without lianas. However, this 

resulted in significantly reduced accumulated above‐ground biomass after 70 years of regrowth by up to 

20 tC/ha (19% of the reference simulation). Ultimately, the simulated negative impact of lianas on the total 

biomass was almost completely cancelled out when the forest reached an old‐growth successional stage. Our 

findings suggest that lianas negatively influence the forest potential carbon sink strength, especially for young, 

disturbed, liana‐rich sites. In light of the critical role that lianas play in the profound changes currently 

experienced by tropical forests, this new model provides a robust numerical tool to forecast the impact of lianas 

on tropical forest carbon sinks. 

1 INTRODUCTION 
Tropical forests are a critical component of the Earth system, storing half of the global forest carbon stocks (Pan 

et al., 2011) and accounting for a third of terrestrial photosynthesis (Beer et al., 2010). Their contribution to the 

global carbon cycle is increasingly acknowledged even though both the magnitude of their role (Malhi, 2010) 

and model predictions (Fisher et al., 2010) remain uncertain. These uncertainties mainly stem from our limited 

understanding of tropical forest functioning in response to perturbations (Powell et al., 2013). As a 

consequence, it is unclear whether tropical forests still constitute a net carbon sink or source globally 

(Popkin, 2017) after decades of declining sequestration capacity among old tropical forests (Brienen et 

al., 2015). Although the drivers of this transition are not yet fully understood, lianas (woody vines) have been 

proposed as a possible cause of tropical forest structural changes (Lewis, Malhi, & Phillips, 2004). 



Lianas use the architecture of trees to climb to the top of the canopy without the need to invest in fully self‐

supporting structures. They have complex growth forms and are very diverse, making them difficult to study. 

Because relatively little was known about lianas prior to the 1990s, many researchers assumed that they play a 

limited role in the carbon cycle, and therefore, most community‐level forest field and modeling studies did not 

consider them at all (Schnitzer & Bongers, 2002). However, host trees infested by lianas experience intense 

above‐ and below‐ground competition and mechanical damage, resulting in reduced growth (Schnitzer & 

Carson, 2010) and increased mortality (Ingwell, Joseph, Becklund, Hubbell, & Schnitzer, 2010). As a result, liana 

abundant forests are believed to possess substantially smaller carbon stocks as compared to forests with lower 

liana density (Durán & Gianoli, 2013); this hypothesis was recently confirmed by a liana removal experiment 

conducted in Gigante, Panama (van der Heijden, Powers, & Schnitzer, 2015). Although such studies need to be 

confirmed with long‐term observations across multiple forests (Schnitzer, van der Heijden, & Powers, 2016), 

they provided, for the first time, empirical evidence that lianas have a substantial negative impact on whole‐

forest carbon uptake/sequestration. Furthermore, approximately half of the tropical forest area is currently 

covered with secondary forest (Poorter et al., 2016), where lianas peak in abundance (Schnitzer, 2018), which 

might reduce the potentially rapid rates of carbon sequestration in such secondary forests (Durán & Sánchez‐

Azofeifa, 2015) and further impact the global carbon cycle. 

Including lianas in vegetation models is particularly important in the age of climate change and increasing 

anthropogenic disturbance, since liana proliferation might be driven by these external factors (Lewis, Edwards, 

& Galbraith, 2015; Schnitzer, 2018). Numerous studies have shown that liana density consistently increases in 

disturbed parts of forests (Putz, 1984; Schnitzer & Bongers, 2002), peaks in late secondary forest, and eventually 

decreases with forest succession (Barry, Schnitzer, Breugel, & Hall, 2015; DeWalt et al., 2015; Gerwing & 

Farias, 2000; Letcher & Chazdon, 2012; Schnitzer & Bongers, 2002), thus making forest demography models the 

most suitable tool for understanding changes in liana dominance over time. 

Despite the demand of the scientific community for the inclusion of lianas in models (van der Heijden, Schnitzer, 

Powers, & Phillips, 2013; Kumar & Scheiter, 2019; McDowell et al., 2018; Phillips et al., 2002) and the increase in 

liana abundance in the Neotropics, no single dynamic global vegetation model (DGVM) so far includes lianas 

(Verbeeck & Kearsley, 2015). Given that an increasing amount of data on different aspects of liana ecology has 

emerged (Gianoli, 2015; Laurance et al., 2014; Schnitzer, 2018; Schnitzer & Bongers, 2011), we argue that now is 

the time to start building such models (Verbeeck & Kearsley, 2015). Because of the potential impact of lianas on 

forest succession and carbon sequestration, the development of validated tools to understand their role in 

forest ecosystems is paramount. 

In this study, we present the first effort toward incorporating lianas in a cohort‐based DGVM, the Ecosystem 

Demography Model (Moorcroft, Hurtt, & Pacala, 2001). The core development consisted of adding a mechanistic 

representation of lianas as a novel plant functional type (PFT) within the model and parameterizing it according 

to the available data. To evaluate and demonstrate the predictive capacity of the model, we performed 

simulations of the new model version for two different Neotropical forest sites. The simulations were 

systematically confronted with multiple (existing and newly collected) datasets, including data from forest 

inventories and eddy flux tower observations. Our main objective was to quantify the role of lianas in the fully 

integrated forest carbon cycle at old‐growth and secondary tropical forest sites, which we achieved by 

comparing model simulations with and without lianas. Due to the observed high density of lianas in young 

forests, we hypothesized that their impact on carbon uptake will be larger for secondary forests than for old‐

growth forests. 



2 MATERIALS AND METHODS 

2.1 The Ecosystem Demography Model 
The Ecosystem Demography Model, version 2 (ED2), is an integrated terrestrial biosphere model incorporating 

state‐of‐the‐art information on physiology and biogeochemistry and a multilayer canopy structure that scales up 

competition for light and soil resources from the tree to the ecosystem scale (Medvigy & Moorcroft, 2011; 

Medvigy, Wofsy, Munger, Hollinger, & Moorcroft, 2009). Plant diversity is represented through PFTs differing in 

their photosynthetic, water use, energy balance, and mortality characteristics (Levine et al., 2016; Xu, Medvigy, 

Powers, Becknell, & Guan, 2016). 

The model has a hierarchical structure in which only the meteorological grid cell is spatially explicit. Within each 

grid cell, the spatial heterogeneity of the forest structure is represented by patches. Patches represent the 

discretized distribution of forest gaps as a function of age since the last disturbance (Moorcroft et al., 2001). In 

the ED2 framework, forest gaps represent the area that would be disturbed by the falling of a large tree. The 

total number of patches controls the resolution of the discrete age distribution, and the relative patch area 

corresponds to the probability of finding forest gaps with ages similar to the patch age. Importantly, forest gaps 

grouped into a patch are not necessarily adjacent: they are grouped based on the similarity of vertical forest 

structure. Likewise, patches do not possess any geographic information within the grid cell. Within any patch, 

the position of each individual plant is also not retained; instead, plants are grouped into cohorts based on their 

size (diameter at breast height, DBH) and their PFT, and the abundance of plants belonging to each cohort 

within each patch is represented by the cohort plant density. 

The stochastic nature of mortality, reproduction, and dispersal processes is represented through a size and age 

structure approximation of a gap model. For further details about the simulated processes, we refer to the 

ED2.2 model description (Longo et al., 2019). 

2.2 Model development 
In comparison to previous efforts of including new PFTs into the ED2 (Ise & Moorcroft, 2010; Wang, LeBauer, & 

Dietze, 2013), the incorporation of lianas entails the additional complexity of representing the parasitic 

relationship with infested trees: lianas, in that sense, are unique because they climb host trees and invade the 

same spatial location (Stewart & Schnitzer, 2017). From a modeling point of view, this means that some cohorts 

(attached lianas and their hosts) can no longer be considered independent from one another. The core of the 

model development procedure consisted of creating new processes to realistically represent the liana–tree 

interaction and parameterizing them appropriately. These new processes as well as the model parameterization 

are briefly presented below. All details regarding implementation features are available in the supplementary 

material of this paper (Supporting Information 1 and 3). The source code is publicly available 

at https://github.com/manfredo89/ED2/releases/tag/3. 

2.2.1 Liana allometry and cohort tracking 
Allometric relationships represent one of the key differences between liana and tree growth forms, as relatively 

small lianas (typically 2–3 cm in DBH) have a high probability of reaching the top of the forest canopy (Kurzel, 

Schnitzer, & Carson, 2006) and may have large leaf and root biomass pools (Putz, 1983; Wyka, Oleksyn, 

Karolewski, & Schnitzer, 2013). ED2 uses allometric relations to partition the assimilated carbon into different 

plant pools. Available carbon is integrated daily from the photosynthetic activity, which is calculated on a fine 

time step (typically 10 min). The values for living tissues (leaves, fine roots, and sapwood) are updated daily, 

while those for structural tissues are updated monthly. The different pools are linked to one another through 

DBH‐dependent allometries. 



Liana‐specific allometries were chosen based on an extensive literature meta‐analysis (see Supporting 

Information 1). For structural biomass, we used the pantropical liana equation of Schnitzer, DeWalt, and Chave 

(2006), which is derived from the most comprehensive liana allometry dataset available. For leaf biomass, we 

used the latest published equation (Gehring, 2004), corrected for small individuals: we used the early 

successional tree allometric parameterization of the ED2 for lianas with small DBH because the aforementioned 

equation for lianas would lead to unrealistically low leaf biomass compared to trees (see Supporting 

Information 1 for details), thus preventing their establishment. 

In ED2, plant height is one of the most important properties of a given cohort because of its direct impact on 

light interception and photosynthetic rates. To represent the liana height, we created a new ontogenic 

allometric equation because, to the best of our knowledge, no such description of the relation across life stages 

exists in the literature. Upon establishment, each liana is assigned to a host tree. Once the liana's height 

matches the host tree's height, the liana is constrained to be a maximum of 20 cm taller than its host (see 

Supporting Information 1 and 2). When it reaches the maximum height, the attached liana can continue growing 

in diameter without obeying the original diameter–height allometric relation. This means that unlike for trees, 

the diameter–height allometry of lianas cannot be represented by a bijective function; that is, the height of 

attached lianas can no longer be determined from their diameter and vice versa. The current model 

implementation allows tree cohorts to support more than one liana cohort; however, we assumed that each 

liana cohort is attached to a single tree cohort, which means that the lianas are attached to their initial host until 

a disturbance or a cohort splitting event occurs (see Supporting Information 2). 

In ED2, allocation to growth and reproduction occurs once all maintenance costs are deducted from the carbon 

balance (e.g., respiration and turnover of living tissues). The parameter controlling the allocation of excess 

carbon to stem growth was tuned for lianas by targeting the observed average annual increase in DBH at the 

Barro Colorado Island (BCI) site in Panama (Putz, 1990). In contrast to that of trees, the reproduction pool of the 

liana PFT is assumed to contain both the carbon used for seeds and fruits as well as the carbon used for 

vegetative reproduction. To account for the high proportion of clonal stems found in recently disturbed forests 

(30% of upright shoots were vegetative offshoots in the 50 ha plot on BCI; Schnitzer et al., 2012), we set the 

height threshold for liana reproduction to be shorter than that for trees (see Supporting Information 3). 

2.2.2 Liana tree‐fall survivorship and resprouting 
Another aspect that makes lianas functionally different from trees is their greater ability to survive disturbance 

events. In ED2, disturbances lead to the creation of new patches (with age 0). The initial population in the 

recently disturbed patch corresponds to the survivors of the disturbance. The model assumes that within the 

patch area, only a limited fraction of small (<10 m) plants survive (see Supporting Information 3). Unlike trees, 

lianas often survive in gaps after the falling of their host (Putz, 1984), potentially giving them a competitive 

advantage in highly disturbed areas (Schnitzer, 2018; Schnitzer & Carson, 2001). Therefore, we assumed a higher 

survivorship probability for attached lianas in the case of tree‐fall (0.8, Table S1). 

The height of the surviving fallen lianas is recalculated to be consistent with the height distribution within that 

patch, as in the model, lianas cannot vertically outgrow their potential hosts. With  representing the initial time 

and t + Δt the time after the disturbance, the new height ( ) is determined by h(t + Δt) = H · (h(t)/hmax), 

where  is the height of the tallest cohort in the newly created patch (typically 10 m) and  is the 

maximum height lianas can reach. This scaling scheme ensures that lianas have a height distribution that is 

consistent with the height of the surviving trees in the patch. 



Since surviving lianas become free standing, the other plant tissues are rescaled according to the allometries 

described in the previous section. The difference in biomass is transferred to the litter pool to represent the 

damage caused to the tissues of the fallen lianas by the tree‐fall event. 

2.2.3 Direct light competition 
Light competition in ED2 implements the flat‐top crown concept (i.e., the leaf area of each plant cohort is 

distributed evenly across the patch), and the crown depth is assumed to be infinitesimally small (i.e., all leaves 

are located at the same vertical position). Because of this specific implementation, each cohort is considered to 

be partially shaded by all leaves of any taller cohorts in that specific patch. As a result, lianas cast their shade not 

only onto their host but also onto all shorter cohorts within the patch. To account for the particularly intense 

light competition between the liana and its host, as well as the damage caused by lianas in the tree crown, we 

assumed a high cost of leaf maintenance for the liana and its host tree. More specifically, both cohorts in a 

liana–host tree association experience a similar relative increase in their respective leaf turnover rate depending 

on the liana–tree leaf biomass ratio (see Supporting Information 2). 

2.3 Model parameterization 
PFTs reflect the strategic diversity that plants exhibit in nature, from the fast‐growing, resource‐acquisitive, early 

successional species to the more conservative, slow‐growing late successional species. For the tropical trees, we 

used the same parameterization as Longo et al. (2019). For the lianas, we used a parameterization based on data 

derived from a comprehensive trait analysis (similar to the work of Asner & Martin, 2012 and Wyka et al., 2013, 

extended to other liana traits). At the photosynthetic level, although not all liana species are fully light 

demanding (Sanches & Válio, 2008), the majority are assumed to have an acquisitive and light‐demanding leaf 

physiology (Asner & Martin, 2012; Cai, Schnitzer, & Bongers, 2009). We therefore assumed liana leaf properties 

to be similar to those of early successional trees, including similar values for the maximum rate of carboxylation 

(Vcmax) and specific leaf area. A list of most relevant liana parameters and their derivation can be found in 

Table S2 (Supporting Information 3). 

2.4 Simulation sites and additional data 
We evaluated the model for two forest sites, Paracou (French Guiana) and the Gigante Peninsula (Panama). We 

chose these two sites because they present key differences in terms of forest successional stage and liana 

infestation (see Table S1 and Supporting Information 4 for more details) and because supporting datasets exist 

for these sites to benchmark the model. 

The Paracou research station is located in the coastal part of French Guiana and is classified as a lowland moist 

primary forest. Records indicate a mean annual precipitation (MAP) of 3,088 mm, with a well‐marked dry season 

from mid‐August to mid‐November (Table 1; Figure S4). The meteorological forcing data span from 2004, when 

the flux tower was installed, to 2016. For this study, we used the flux tower measurements using the eddy 

covariance technique as described in Bonal et al. (2008; Aguilos, Hérault, Burban, Wagner, & Bonal, 2018), as 

well as the meteorological forcing data from the tower measurements. Tree inventories have been conducted in 

10 plots of 70 × 70 m established in 2004 in the flux tower footprint, recording all trees with DBH ≥ 10 cm. Liana 

inventories have been performed in the same plots since 2004 (DBH ≥ 10 cm) and included smaller individuals 

from 2015 (DBH ≥ 2 cm, see Supporting Information 5). 

Table 1. Main features of the two forest sites used for the simulation 

Site name Paracou Gigante peninsula 

Country French Guiana (France) Panama 

Forest type Tropical moist Semi‐deciduous, seasonally moist 

Forest successional stage Old growth Secondary (approximately 70 years old) 



Coordinates (latitude, longitude) 5.3N, 52.9W 9.2N, 79.8W 

Mean altitude (m a.s.l.) 40 80 

Mean annual temperature (°C) 26.0 ± 0.3 25.6 ± 0.4 

Mean annual precipitation (mm) 3,088 ± 117 2,394 ± 94 

Available years of meteorological data 2004–2016 2003–2016 

Above‐ground biomass (kgc/m2) 18.5–21.2 (16.9) 7.1–10 (8.2) 

Liana basal area (m2/ha) 0.42 (0.48) 2.42 (1.53) 

Tree basal area (m2/ha) 32.6 (29.7) 18.7 (15.7) 

Liana stem density (DBH ≥ 2.5 cm; per ha) 131 (481) 1,332 (996) 

Tree stem density (DBH ≥ 10 cm; per ha) 576 (778) 409 (575) 

Mean annual temperature and mean annual precipitation are reported with averages ± standard deviation. 

Numbers in parentheses are model outputs for the simulation with lianas. 

 

The second site used to test our model is the secondary forest located on the Gigante Peninsula, which is part of 

the Barro Colorado Nature Monument in Panama. The forest is estimated to be approximately 70 years old 

(Schnitzer, 2014), and, like the forest at Paracou, it is a lowland moist tropical forest. On average, Gigante 

receives approximately 2,400 mm of rainfall annually. The dry season runs from mid‐December to mid‐April 

(Table 1 and Figure S4). Meteorological data were collected from the nearby field station of BCI (Powell, 

Faybishenko, Kueppers, & Paton, 2019). Tree and liana inventories were carried out in eight plots of 60 × 60 m 

used as control plots for a liana removal experiment. For both sites, we recycled the meteorological forcing data 

throughout the entire simulation. 

Most of the data used in this study to evaluate the model predictions come from published studies (see 

Table S3). Whenever possible, we used data specifically available for the two study sites. However, some other 

empirical data were added to the model–data comparison from experimental plots in different locations close to 

the sites of interest. 

Additional observational data were also collected in this study, specifically those from the liana inventories 

conducted at Paracou in 2015 mentioned above and plant area index (PAI) values from terrestrial laser scans 

(TLSs). The scans were performed in three different control plots and three removal plots in Gigante in 2016. 

Removal plots are forest plots from which all lianas were removed in 2011 and that were maintained liana‐free 

through the successive extirpation of new lianas (van der Heijden et al., 2015). The detailed steps and formulas 

used to derive the vertically resolved PAI from TLSs are described (Krishna Moorthy, Calders, Porcia e Brugnera, 

Schnitzer, & Verbeeck, 2018). We used the allometric equation generated from the community‐level analysis of 

Bohman and O'Brien (2006) to calculate the crown depth from the simulated DBH for the comparison between 

simulated LAI and TLS PAI. The leaf area was assumed to be uniformly distributed within the crown depth. 

Simulated leaf area below 1.2 m (the tripod height) was not considered, and the simulated wood area was 

ignored. 

2.5 Model setup 
The model runs were initialized from near bare ground (all PFTs have an initial sapling density of 0.1/m2) and 

were continued for 500 years to reach an equilibrium state. The atmospheric CO2 concentration was assumed to 

be constant over the simulated period and fixed at 370 ppm. The runs with and without lianas were performed 

with the same conditions but turning on and off the liana PFT. All results shown in this study come from 

simulations achieved with 34 cohorts per patch and an upper limit of 34 patches. For comparison to the field 

observations, the simulated results for the Paracou site were averaged over a 400–500 year period 



(corresponding to the equilibrium), and the results for Gigante were averaged over a 50–100 year period 

(around the approximate age of the forest). 

Relative changes (RC, in %) in fluxes or pools (F) were calculated as 

 

where the subscripts L and NL refer, respectively, to the simulations with and without lianas. By convention, 

positive RC values represent increases in the corresponding flux or pool when the liana PFT is included in the 

model simulation regardless of the sign of the flux/pool in the baseline simulation. 

For the tuning of the liana growth parameter (allocation to stem growth), we ran a batch of simulations with a 

reduced number of patches (18) and cohorts per patch (18), exploring the whole parameter range, and found 

the best value with a bisection algorithm (see Supporting Information 3 for details). The optimal value was then 

used to run the final simulations presented in this study. 

3 RESULTS 

3.1 Carbon pools and fluxes 
With values of 16.9 kgc/m2 in Paracou (Figure 1) and 8.2 kgc/m2 in Gigante (Figure S6), wood biomass was the 

largest simulated carbon pool and accounted for more than 95% of the above‐ground biomass (AGB), or 

approximately two‐thirds of total plant biomass, at both sites. In Paracou, lianas constituted approximately 1.1% 

of the forest AGB, consistent with the observed 1.3 ± 0.8% (average ± standard deviation). For Gigante, the 

percentage of liana AGB was 8.2%, in agreement with the observed value of 12.0 ± 4.9% (Figure S6). 

 
Figure 1 Total forest carbon pools and fluxes (left panel) and liana contributions (right panel). The table shows 
simulated (Sim) and observed (Obs) values for Paracou and the corresponding references (Ref). The sketch 
shows simulated liana contributions, with observed liana contributions in parentheses. B, biomass; GPP, gross 
primary productivity; NEE, net ecosystem exchange (negative values mean carbon uptake); NPP, net primary 
productivity; R, respiration. References for observations: aParacou, French Guiana (Aguilos et 
al., 2018); bParacou, French Guiana (TLS data, this study); cParacou, French Guiana (Rutishauser, Wagner, 
Herault, Nicolini, & Blanc, 2010); dParacou, French Guiana (Longo et al., 2019); eParacou, French Guiana 
(Domenach et al., 2004); fParacou, French Guiana (Stahl, 2010); gParacou, French Guiana (De Weirdt et 
al., 2012); hParacou, French Guiana (Baker et al., 2004); iParacou, French Guiana (Stahl, Burban, Goret, & 

https://onlinelibrary.wiley.com/cms/asset/97c174b1-f0b0-4cb1-9b26-3110f30018e2/gcb14769-fig-0001-m.jpg


Bonal, 2011); jParacou, French Guiana (Bréchet, 2009; Stahl et al., 2013); kDifference between total soil and 
heterotrophic respiration (Bréchet, 2009; Bréchet, Ponton, Alméras, Bonal, & Epron, 2011; Epron, Bosc, Bonal, & 
Freycon, 2006); lNouragues, French Guiana (Chave et al., 2008); mDifferent sites in South America and Asia (van 
der Heijden et al., 2013); nLa Selva Biological Station, Costa Rica (Cavaleri, Oberbauer, & Ryan, 2008); oLa Selva 
Biological Station, Costa Rica (Cavaleri et al., 2008) 
 

The liana contribution to leaf net primary productivity (NPP) was higher in Gigante (36.2% modeled) than in 

Paracou (14.8% modeled vs. 23.5% observed), and as a result of the high leaf turnover, the relative contribution 

of lianas to litterfall was higher than their contribution to leaf biomass. In Paracou, the simulated liana litterfall 

accounted for 15.3% of the total litterfall carbon flux (measurements in the field vary between 13% and 38%; 

van der Heijden et al., 2013), while liana leaves only contributed to 4.0% of the total standing leaf biomass. For 

the simulations at Gigante, lianas accounted for 16% of the forest leaf biomass and 38% of the litterfall carbon 

flux. The general trend observed at both sites was consistent with the observation that, given their biomass, 

lianas disproportionally contribute to leaf litter production (Tang, Kitching, & Cao, 2012). The total simulated 

litterfall for Paracou was in good agreement with the empirical data (0.25 vs. 0.24 kgc m−2 year−1). The simulated 

liana component of the LAI was approximately 7% for Paracou and 22% for Gigante. The data collected from the 

plots in the field indicate that lianas contribute between 9% and 31% of the ecosystem LAI (van der Heijden et 

al., 2013). Removal experiments carried out in gaps and intact forest in Gigante found the liana LAI to account 

for 17% and 20% of the total LAI, respectively (Rodríguez‐Ronderos et al., 2016; Schnitzer & Carson, 2010). 

Overall, the model overestimated the NPP in Paracou (1.77 vs. 1.16 kgc m−2 year−1), while the simulated forest 

gross primary production (GPP) was close to the observed value (3.59 vs. 3.7 kgc m−2 year−1). For both sites, the 

simulated liana contribution to the reproductive biomass was large (70.3% and 24.4% for Gigante and Paracou, 

respectively), mainly due to the high investment in vegetative reproduction among lianas. 

The inclusion of lianas in the model did not negatively affect the predicted GPP or latent heat fluxes for the 

Paracou site or their seasonality, which were both well reproduced by the model (Figure S7). Similarly, including 

the lianas in the simulation did not significantly impact the estimated GPP fluxes in Gigante. 

3.2 Forest structure and demography 
The simulation results showed significantly more lianas at the Gigante site than at Paracou, with densities of 

996 stems/ha (DBH ≥ 2.5 cm) for Gigante and 481 stems/ha for Paracou (Table 1; Figure 2). The field 

measurements indicate a liana density of 1,332 stems/ha and 131 stems/ha for Gigante and Paracou, 

respectively. By comparing these numbers with those in the Global Liana Database (DeWalt et al., 2015), it 

appears that Gigante and Paracou stand at the opposite sides of the liana density spectrum for the Neotropics 

(min = 105 stems/ha at km 41, Brazil; max = 1,414 stems/ha at Fazenda Sete, Brazil). According to our 

simulations, lianas were most abundant in the canopy of young forest, such as that in Gigante, and progressively 

declined in older patches (Figure 4a) to become almost absent in the top canopy of old‐growth forests. The 

simulated liana basal area was 1.53 cm2/m2 for Gigante (2.41 cm2/m2 in the field data) and 0.48 cm2/m2 for 

Paracou (0.42 cm2/m2 in the field data). The experimental data showed significantly different demography for 

the two sites. The simulated liana size distributions exhibited an exponential decrease, similar to what is 

observed in Gigante but different from the flatter distribution observed in Paracou. The percentage of the total 

liana basal area represented by large lianas (DBH ≥ 10 cm) was 7.6% for Gigante (15% in the field data) and 2.6% 

(40% in the field data) for Paracou. We stress that while the model represents a landscape average, field data 

come from a limited number of plots and are therefore not necessarily representative of the average forest. 



 
Figure 2 Forest demographic composition for the two simulated sites: Gigante, Panama (a–b–c), and Paracou, 
French Guiana (d–e–f). Panels (a) and (d) show a representative area of modeled forest of 1 ha. To visualize the 
forest composition, the forest is decomposed into patches according to their simulated relative area, and the 
three cohort densities and sizes are preserved (as well as the liana tree tracking). Panels (b–c) and (e–f) compare 
the basal area distributions of liana and tree PFTs, respectively, as observed locally (black) or simulated 
according to the ED2 (shades of blue and green). Tree basal area values (panels c and f) are compared for the 
simulations with (solid bars) or without (hatched bars) lianas. Σ represents the total basal area according to the 
model (blue or green) and field observations (black). Error bars represent the standard deviation of the different 
plot measurements (smaller error bars correspond to more homogeneous plots). The K–Sstat is the test statistic 
of the two‐sample Kolmogorov–Smirnov test between the observed and simulated size distributions (with a 
sampling size of 250 for each distribution). Liana basal area in Gigante was the only case in which the observed 
and simulated distribution did not significantly differ 
 

The tree size distribution was rather poorly represented by the model regardless of the inclusion of lianas. For 

the Gigante site, the introduction of lianas into the model reduced the basal area across the entire size range 

(Figure 2c) and decreased the tree stem density from 705/ha to 575/ha, while the Paracou tree density was 

reduced from 858/ha to 778/ha. Given that the tree stem density calculated for Paracou was almost 10% lower 

when lianas were included in the simulations, the similar total tree basal area implies that the average tree DBH 

was slightly larger when we included lianas. The inclusion of lianas had a noticeable effect on the simulated PFT 

composition. Early successionals were significantly affected by lianas and went almost extinct when the forest 

was approximately 150 years old. The strong competition between lianas and pioneer trees benefited the 

shade‐tolerant PFT, which at the same forest age comprised more than 50% of the total biomass (compared to 

less than 40% when lianas were not included). 

The trends in the simulated demography were largely governed by the forest stand age, while the climatic 

differences between the two test sites had very little impact on the overall forest carbon cycle and demography 

(Figures S8 and S9). For example, the simulated liana basal area for Paracou was 1.80 cm2/m2 at the Gigante 

stand age, while the value was 1.71 cm2/m2 for the actual Gigante simulation. Similarly, Gigante experienced a 

decrease in liana basal area after approximately 50 years according to the simulation. 
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In addition to the total LAI (Figure 1 for Paracou and Figure S6 for Gigante), we also examined whether the 

model captured the main peaks in the vertical stand structure in Gigante, measured with TLS in the control and 

removal plots (Figure 3). We compared the simulated LAI vertical distribution with the vertically resolved PAI 

derived from the TLS data. The observed vertical distribution was poorly captured by the model, with systematic 

underestimation of the PAI. The source of this underestimation is twofold: first, the simulations are the results 

of a landscape average that included recently disturbed patches, with lower LAI values (Figure 4a); this clogged 

phase leads to a significant peak in liana LAI at approximately 5 m. Second, the wood area index contribution 

was not accounted for in the simulations. 

 
Figure 3 Modeled vertical distribution of the LAI in simulations with (red dashed line) or without (blue dashed 
line) lianas and TLS‐derived PAI profiles in control (red envelopes) and removal (blue envelopes) plots for 
Gigante, Panama. The shaded areas delimit the mean plus or minus one standard deviation, as calculated from 
the three vertical distributions scanned for each treatment. The black dashed line is the liana contribution to the 
total LAI vertical distribution. The modeled vertical distributions were calculated as the area‐weighted average 
of all patches in the simulated forest using 0.5 m height intervals and were reconstructed by distributing the LAI 
of the flat‐top crown over a DBH‐dependent crown depth (Bohman & O'Brien, 2006) 
 

Despite this underestimation, the model was able to qualitatively reproduce some observed trends. In 

particular, adding lianas to the simulations led to a reduced PAI for trees taller than 16 m, as observed in the 

control plots. Measurements in gaps that were in a state of arrested succession indicated that they have lower 

canopies than liana‐dominated patches (average ± standard error was 16.5 ± 0.3 m vs. 30.4 ± 0.2 m; Tymen et 

al., 2015), which was confirmed by our model: the average top‐of‐canopy height was 9.9 m in liana‐dominated 

patches (where the liana LAI is more than half the total) and 25.6 m after arrested succession. 

Even if liana leaves persist in old patches (the simulated liana LAI is strictly positive up to 35 m), the bulk of liana 

leaves are found in young patches. This result is consistent with the liana size distribution, which shows that the 

model underestimated the contribution of large lianas. 

3.3 Trends in carbon dynamics and PFT composition 
Simulations with ED2 result in the aggregation of patches with different disturbance histories across the 

landscape. In our simulations, only natural tree‐fall disturbance was considered. Figure 4 illustrates the 

differences between the results for the individual patches and the patches aggregated across the landscape. At 

the single patch level (Figure 4a), lianas slowed down forest carbon sequestration, leading to lower AGB stocks 

until the patch was approximately 100 years old (with a reduction of approximately 50% after 20 years). 

Figure 4b,c shows the AGB time series as an aggregate for the 34 patches considered in the landscape. For 
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Gigante, the reduced growth rate translated into a reduction in the AGB stocks (−19%); in Paracou, the lower 

abundance of lianas and the lower mortality (on a per kgC basis) resulted in a nonsignificant AGB difference with 

the nonliana scenario. 

 
Figure 4 Comparison of simulations with (solid lines) and without (dashed lines) lianas. The upper graphs (a–c–e) 
show the above‐ground biomass (AGB), while the bottom graphs (b–d–f) represent LAI as a function of time for 
one patch (a–d) and for the forest aggregate (b–c–e–f). The gray zones represent the period during which the 
model outputs were averaged for all other plots (corresponding to the approximate stand age of the forest 
sites). The increases in LAI are caused by the crossing of the reproductive thresholds for the different plant 
functional types (PFTs) 
 

The low allocation of lianas to wood (in Paracou, the mean individual stem biomass was 5.95 kgC versus 

131 kgC for adult lianas and trees, respectively) had a strong negative impact on the forest woody biomass 

growth rate (which decreased by 0.03 and 0.16 kgC m−2 year−1, representing relative reductions of 5% and 28%, 

for Paracou and Gigante, respectively; see Figure S10), which is consistent with the approximate 10% reduction 

observed by van der Heijden and Phillips (2009). Given their small investment in structural stem tissues, lianas 

are left with a greater fraction of carbon to allocate to living tissues and reproduction. In fact, despite the total 

leaf biomass and LAI being almost not affected by the introduction of lianas, the leaf NPP was substantially 

higher (+8% and +20% for Paracou and Gigante, respectively, Figure 5) due to the high leaf turnover of lianas 

and the increased competition for light. At the whole forest level, the total leaf biomass and LAI were 

uninfluenced by the inclusion of lianas (Figures 4 and 5), showing that liana leaf abundance caused a 

proportional decrease in the tree leaf abundance (Figure 2). Since the model does not account for trait plasticity, 

this reduction of tree LAI was caused by a lower tree density. Only patches younger than 5 years, where lianas 

are highly dominant, displayed a significant increase in the total LAI (Figure 4d). 
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Figure 5 Relative changes in carbon pools and fluxes for Paracou, French Guiana (brown), and Gigante, Panama 
(yellow), upon inclusion of the liana plant functional type in the simulations. B, biomass; GPP, gross primary 
productivity; NPP, net primary productivity; R, respiration 
 

The simulated vegetation composition was significantly affected by the presence of lianas. During the early 

stages of growth, early‐ and mid‐successional tree biomass significantly declined (−58% and −36%, respectively, 

for Gigante). For mature forest, such as that in Paracou, the total biomass was approximately the same, with a 

slight increase in the fraction of late successionals (+6%) and a marked decrease in early successionals (−25%). 

After the forest is around 100 years old, late‐successional trees display a large increase in biomass, especially for 

Paracou where they comprised as much as 65% of the total AGB. During the same period, early successionals 

decline steeply, only to recover after year 200. 

For both sites, the GPP is only slightly impacted by the introduction of lianas (Figure 5). This raises a 

fundamental question: where is the canopy‐assimilated carbon going in liana‐rich forests? 

For the Gigante forest, the simulation that included lianas showed 33% lower tree mortality on a kgc lost basis 

(0.44 vs. 0.66 kgc m−2 year−1). This finding does not imply that lianas reduce tree mortality but rather reflects the 

observation that liana‐infested forests have a reduced carbon stock, leading to a lower carbon flux from 

mortality. Despite being less impacted by lianas, the Paracou forest displayed qualitatively similar trends in 

mortality. Compared to simulations without lianas, the leaf NPP was 8% higher in Paracou and 20% higher in 

Gigante (Figure 5). Reproductive NPP was 26% higher in Paracou and 87% higher in Gigante, mainly driven by 

the contribution of lianas. Stem NPP was considerably lower in both Paracou (−8%) and Gigante (−25%). This 

shift in the production of plant material with a shorter residence time was consistent with empirically observed 

data (van der Heijden et al., 2015) and resulted in an overall decrease in carbon stocks for the liana forest. 
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4 DISCUSSION 
One of the advantages of our modeling approach is the possibility of tracking the role of lianas in the dynamics 

of the different carbon pools and fluxes. This is not possible with observations in the field, as many of the 

variables are rarely measurable simultaneously or cannot be measured at all for practical or financial reasons, 

for example, GPP contributions and below‐ground biomass. In the following paragraphs, we provide an overview 

of the impacts of lianas on the tropical forest dynamics as well as a critical analysis of the results and suggest 

possible improvements for the parameterization and representation of the liana PFT. 

4.1 Liana impacts on tropical forest 
As a consequence of the contrasting abundance of lianas in young and old forests, their impact on the carbon 

cycle in these ecosystems is markedly different. At the younger site of Gigante, lianas account for one‐fourth of 

the total LAI, and due to their competition with early successional trees, they reduce the total AGB by 

approximately 19%. Paracou displays a similar effect of lianas during the same early stage of succession; 

however, their impact is significantly weaker during the 400–500 year period: liana contribution to the LAI is 

lower (approximately 7%), and the total forest AGB stocks are similar for simulations with and without lianas. 

Liana density significantly differs between the two sites (Table 1), and the impact of lianas on carbon dynamics 

was greater where they were more abundant. While these findings cannot be extrapolated to all primary and 

secondary forests (within which liana abundance varies substantially), the results indicate that the impact of 

lianas on forest demography and the carbon cycle is correlated with liana density. 

In Gigante, the presence of lianas has a strong impact on the different above‐ground fractions of NPP (Figure 5). 

Although total NPP is not strongly impacted by the introduction of lianas, the greater allocation to leaves and 

lower allocation to stem reduces the potential for medium term (150 years) carbon sequestration in liana‐rich 

forests. As of 2008, the amount of secondary (between 1 and 60 years old) forest in the Neotropics was 

estimated to be 2.4 million km2. Over the next 40 years, this land can potentially accumulate a total above‐

ground carbon stock of 8.48 PgC (Chazdon et al., 2016). Our findings suggest that this carbon sink potential could 

be severely affected by liana proliferation. 

The differences between Gigante and Paracou are consistent with the evidence that lianas are most abundant in 

young forests and recently created gaps (Barry et al., 2015; Putz, 1984; Schnitzer & Carson, 2010). Young 

patches are dominated by lianas and persist in a state of arrested succession for approximately 10 years 

(Figure 4d); this leads to size distributions that are highly skewed toward small individuals of relatively low 

height in young patches and a very low liana density in older patches (Figures 3 and 4). When looking at the 

simulated single patch dynamics (Figure 4a,d), the disappearance of lianas is likely too rapid. In fact, 

experimental evidence suggests that lianas persist in mature forests (Roeder, Hölscher, & Ferraz, 2010; Schnitzer 

et al., 2012) and that their contribution to the total basal area remains constant even as the liana stem density 

declines (Dewalt, Schnitzer, & Denslow, 2000). These model predictions are likely driven by a high liana mortality 

parameter as well as the inability for lianas to change hosts during the course of their life in silico. Currently, the 

range of reported mortality rate values is very broad, varying from 0.27%/year (Putz, 1990) to 9.4%/year 

(Mascaro, Schnitzer, & Carson, 2004). The current liana mortality parameterization could be improved in the 

future with additional field data. 

The model predicts differential impacts of lianas on trees of different functional types: lianas negatively impact 

pioneer trees and favor shade‐tolerant trees. Although this differentiated effect of liana infestation is still 

debated (Schnitzer & Carson, 2010), a recent study by Visser et al. (2017) tends to corroborate the model output 

by finding that shade tolerance correlates with tolerance of liana infestation. In the model, the low density‐

independent mortality of shade‐tolerant species translates to longer residence times than those shown by the 

occupying lianas. Late successionals can therefore survive liana infestation by outliving their liana colonists. This 



effect is consistent with empirical evidence of shade‐tolerant trees living with high levels of liana infestation for 

decades (Ingwell et al., 2010). 

4.2 Model limitations and perspectives 
Our model is able to capture some important features of a liana‐infested forest. However, our implementation 

relies on a number of assumptions that should be re‐evaluated as additional data become available. For 

example, the liana PFT was assumed to be representative of all lianas in tropical forests, whereas in nature, 

lianas display a wide diversity of growth forms, climbing mechanisms, dispersal types, leaf photosynthetic 

properties, and allocation patterns (Isnard & Silk, 2009; Wyka et al., 2013). Like for trees, liana species variability 

translates to a large range of allometric models and trait distributions. For example, liana wood density varies 

between 0.28 and 0.84 g/cm3 in the BCI inventory data, a range similar to that observed for trees (Muller‐

Landau, 2004). Even more importantly, the use of different published allometric equations leads to 15‐fold 

differences in predicted liana AGB (Figure S2). In fact, a seminal study on liana allometry suggests that “stem 

diameter does not appear to be as good of a predictor for above‐ground stem biomass for lianas as it is for 

trees” (Schnitzer et al., 2006). The inclusion of a representation of stem length in the model could lead to 

improved biomass estimates (Gehring, 2004). For these new types of allometry to be considered in the model, 

there is a need for larger allometric datasets, especially those that include large lianas. 

Our model predicts that the burden of hosting lianas is borne disproportionately by early‐ and mid‐successional 

trees: lianas colonize the first established community and mostly die with it. This is due to mortality, 

competition within that community, and the impossibility of recruiting in the shade. The experimental data 

regarding the impact of lianas on specific functional groups or on single species are still debated (van der 

Heijden & Phillips, 2009; Martínez‐Izquierdo, García, Powers, & Schnitzer, 2016); however, we acknowledge that 

some mechanisms of liana colonization (e.g., the colonization of multiple trees by the same liana) or of liana loss 

(e.g., by branch shedding) were not represented in the model and could have different impacts on tree PFTs. 

The transition rates from and to a liana‐infested state have recently been investigated (Visser et al., 2018) and 

could be used in the future to improve the model parameterization. We consider the direct competition for light 

between lianas and their hosts as one of the most speculative parts of our current model implementation; this 

process needs further attention in observational studies for future model improvement. 

One of the key parameters to accurately represent lianas was the high allocation to reproduction and the low 

allocation to DBH growth; this contrasts with trees, which mainly allocate their excess carbon to stem growth 

(Supporting Information 3). It is worth noting that in the model, the contribution of lianas to the reproduction 

pool accounts not only for seeds but also for vegetative reproduction through the production of new shoots. 

Both of these mechanisms are considered to have a low rate of success in the model; that is, only 5% of the 

carbon invested in reproduction is eventually transformed into actual saplings (Table S1). Similar to the 

increased litterfall, this process contributes to the higher turnover rate of the liana‐infested forests. Several 

studies have demonstrated the importance of clonal reproduction for lianas and support our parameterization: 

even if the frequency of clonal reproduction is highly variable among liana species (Schnitzer et al., 2012), the 

ability to spread vegetatively is very common among lianas, and species that seem to lack this capacity are rare 

(Caballe, 1994). Vegetative reproduction has potentially huge impacts on liana proliferation, distribution, and 

overall impact on the forest. For instance, Schnitzer et al. (2012) showed that the highly clonal liana species may 

be more disturbance adapted and may account for the clumped distribution pattern observed among lianas 

(Ledo & Schnitzer, 2014). A future improved model could benefit from a mechanistic representation of liana 

clonal reproduction, as we currently simply increase the allocation of excess carbon by lianas to reproductive 

tissues to represent this process. 



The two sites considered in this study are both relatively wet, but some noticeable climatic differences exist 

between them: the dry season in central Gigante is longer than that in Paracou (4 months vs. 3 months), and the 

cumulative rainfall in Gigante is 20% lower than that in Paracou (2,400 vs. 3,000 mm). The simulated forest 

dynamics were, however, very similar for both sites (Figures S8 and S9), which are explained by the dominance 

of above‐ground competition over below‐ground competition in the simulations. For example, for the Gigante 

site, the mid‐afternoon water stress coefficient (unitless factor between 0 and 1 reducing the stomatal aperture 

due to drought stress, see Medvigy et al., 2009) was 0.94 ± 0.02; that is, the overall forest transpiration was only 

marginally reduced by water stress. This finding was confirmed in all simulations and was not affected by the 

presence of lianas. While drought stress has been experimentally observed in the Gigante Peninsula (Álvarez‐

Cansino, Schnitzer, Reid, & Powers, 2015), it was not reproduced in our simulations, and a better representation 

of below‐ground competition between growth forms should be the focus of future research. When comparing 

trees and lianas, hydraulic properties display significant differences between the two growth forms (e.g., 

Johnson, Domec, Woodruff, McCulloh, & Meinzer, 2013). These differences likely contribute to the observed 

negative correlation between liana abundance and MAP and the positive correlation between liana abundance 

and mean dry season length (DeWalt et al., 2009). Simulating tree–liana competition across a broader range of 

environmental conditions (drier sites and periods) would require taking these differences in water uptake and 

transport strategies into account. From a modeling point of view, a new physically based implementation of 

water uptake and transport toward the canopy for ED2 was recently developed by Xu et al. (2016) and offers the 

opportunity to account for these hydraulic differences in future studies. 

Despite the significant limitations that emerged from the analysis of our results, we can conclude that the model 

simulations with the new liana PFT, captured many peculiarities of the carbon dynamics of liana‐rich forests. 

This first implementation of lianas into a DGVM should open new avenues to forecast the impact of liana 

infestation on the demography and biogeochemical cycles of tropical forests. 

ACKNOWLEDGEMENTS 
This study was funded by the European Research Council Starting Grant 637643 (TREECLIMBERS) and the special 

research fund of Gent University (BOF project 01N00816). The computational resources used in this work were 

provided by the Flemish Supercomputer Center, funded by Ghent University, FWO and the Flemish government. 

We thank Simone Vieira's lab, where we conducted part of the research. During the preparation of this 

manuscript, FM was funded by the BAEF and the WBI as a research fellow and is thankful to these organizations 

for their financial support. We also thank B. Turner, J. Wright, F. Berzaghi, E. Kearsley, and B. Burban for data 

and/or helpful discussion, as well as B. Cowdery and A. Gardella for proofreading the final version of the 

manuscript. Data collection at Paracou was supported by the French national research infrastructure, ANAEE‐F 

(ANAEE‐France: ANR‐11‐INBS‐0001) and two “investissement d'avenir” grants from the Agence Nationale de la 

Recherche (CEBA, ref ANR‐10‐LABX‐25‐01; ARBRE, ref. ANR‐11‐LABX‐0002‐01). Data collection at BCI was 

supported by STRI and the NGEE‐Tropics project; S. Paton performed the QA/QC. We also thank two anonymous 

reviewers for very constructive comments that allowed the substantial improvement of the manuscript quality. 

CONFLICT OF INTEREST 
The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 
H.V., M.D.P., and F.M. designed the study. M.D.P. developed the model code, with contributions from M.L. and 

F.M. M.D.P. carried out the simulations. M.D.P., F.M., and M.L. analyzed the results. S.M. provided the LIDAR 



data. M.D.P. and F.M. led the manuscript writing, with additional contributions from M.L. and H.V. All other 

authors contributed to discussions and revised the final version of the manuscript. 

Supporting Information 
Filename Description 

gcb14769-sup-0001-Supinfo.docxWord document, 3.4 MB   

Please note: The publisher is not responsible for the content or functionality of any supporting information 

supplied by the authors. Any queries (other than missing content) should be directed to the corresponding 

author for the article. 

 

REFERENCES 
Aguilos, M., Hérault, B., Burban, B., Wagner, F., & Bonal, D. (2018). What drives long‐term variations in carbon 

flux and balance in a tropical rainforest in French Guiana? Agricultural and Forest Meteorology, 253–
254, 114– 123. https://doi.org/10.1016/j.agrformet.2018.02.009 

Álvarez‐Cansino, L., Schnitzer, S. A., Reid, J. P., & Powers, J. S. (2015). Liana competition with tropical trees varies 
seasonally but not with tree species identity. Ecology, 96( 1), 39– 45. https://doi.org/10.1890/14-1002.1 

Asner, G. P., & Martin, R. E. (2012). Contrasting leaf chemical traits in tropical lianas and trees: Implications for 
future forest composition. Ecology Letters, 15( 9), 1001– 1007. https://doi.org/10.1111/j.1461-
0248.2012.01821.x 

Barry, K. E., Schnitzer, S. A., van Breugel, M., & Hall, J. S. (2015). Rapid liana colonization along a secondary forest 
chronosequence. Biotropica, 47( 6), 672– 680. https://doi.org/10.1111/btp.12259 

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., … Vásquez Martínez, R. (2004). Variation 
in wood density determines spatial patterns in Amazonian forest biomass. Global Change 
Biology, 10( 5), 545– 562. https://doi.org/10.1111/j.1365-2486.2004.00751.x 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., … Papale, D. (2010). Terrestrial gross 
carbon dioxide uptake: Global distribution and covariation with climate. Science, 329( 5993), 834– 838. 

Bohlman, S., & O'Brien, S. (2006). Allometry, adult stature and regeneration requirement of 65 tree species on 
Barro Colorado Island, Panama. Journal of Tropical 
Ecology, 22( 02), 123– 136. https://doi.org/10.1017/S0266467405003019 

Bonal, D., Bosc, A., Ponton, S., Goret, J.‐Y., Burban, B., Gross, P., … Granier, A. (2008). Impact of severe dry 
season on net ecosystem exchange in the neotropical rainforest of French Guiana. Global Change 
Biology, 14( 8), 1917– 1933. https://doi.org/10.1111/j.1365-2486.2008.01610.x 

Bréchet, L. (2009). Contribution à l'étude de la variabilité spatiale des composantes du bilan de carbone d'un sol 
de forêt tropicale humide (Paracou, Guyane française), Ph.d. thesis, Université Henri Poincaré de 
Nancy, Nancy, Lorraine, France, in French. 

Bréchet, L., Ponton, S., Alméras, T., Bonal, D., & Epron, D. (2011). Does spatial distribution of tree size account 
for spatial variation in soil respiration in a tropical forest? Plant and 
Soil, 347( 1/2), 293– 303. https://doi.org/10.1007/s11104-011-0848-1 

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., … Zagt, R. J. (2015). Long‐term 
decline of the Amazon carbon sink. Nature, 519( 7543), 344– 348. 

Caballe, G. (1994). Ramet proliferation by longitudinal splitting in the Gabonese rain forest liana Dalhousiea 
africana S. Moore (Papilionaceae). Biotropica, 26( 3), 266. https://doi.org/10.2307/2388847 

Cai, Z.‐Q., Schnitzer, S. A., & Bongers, F. (2009). Seasonal differences in leaf‐level physiology give lianas a 
competitive advantage over trees in a tropical seasonal 
forest. Oecologia, 161( 1), 25– 33. https://doi.org/10.1007/s00442-009-1355-4 

Cavaleri, M. A., Oberbauer, S. F., & Ryan, M. G. (2008). Foliar and ecosystem respiration in an old-growth tropical 
rain forest. Plant, Cell and Environment, 31, 473– 483. 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fgcb.14769&file=gcb14769-sup-0001-Supinfo.docx
https://doi.org/10.1016/j.agrformet.2018.02.009
https://doi.org/10.1890/14-1002.1
https://doi.org/10.1111/j.1461-0248.2012.01821.x
https://doi.org/10.1111/j.1461-0248.2012.01821.x
https://doi.org/10.1111/btp.12259
https://doi.org/10.1111/j.1365-2486.2004.00751.x
https://doi.org/10.1017/S0266467405003019
https://doi.org/10.1111/j.1365-2486.2008.01610.x
https://doi.org/10.1007/s11104-011-0848-1
https://doi.org/10.2307/2388847
https://doi.org/10.1007/s00442-009-1355-4


Chave, J., Olivier, J., Bongers, F., Châtelet, P., Forget, P.‐M., van der Meer, P., … Charles‐Dominique, 
P. (2008). Above‐ground biomass and productivity in a rain forest of eastern South America. Journal of 
Tropical Ecology, 24( 04), 355– 366. https://doi.org/10.1017/S0266467408005075 

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Aide, T. M., … Poorter, 
L. (2016). Carbon sequestration potential of second‐growth forest regeneration in the Latin American 
tropics. Science Advances, 2( 5), e1501639. https://doi.org/10.1126/sciadv.1501639 

De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., … Steppe, K. (2012). Seasonal leaf 
dynamics for tropical evergreen forests in a process‐based global ecosystem model. Geoscientific Model 
Development, 5( 5), 1091– 1108. https://doi.org/10.5194/gmd-5-1091-2012 

DeWalt, S. J., Schnitzer, S. A., Alves, L. F., Bongers, F., Burnham, R. J., Cai, Z., … van Melis, 
J. (2015). Biogeographical patterns of liana abundance and diversity. In S. A. Schnitzer, F. Bongers, R. J. 
Burnham, & F. E. Putz (Eds.), Ecology of lianas (Vol. 27, pp. 131– 146). Chichester, UK: John Wiley & Sons 
Ltd. 

DeWalt, S. J., Schnitzer, S. A., Chave, J., Bongers, F., Burnham, R. J., Cai, Z., … Thomas, D. (2009). Annual rainfall 
and seasonality predict pan‐tropical patterns of liana density and basal 
area. Biotropica, 42( 3), 309– 317. https://doi.org/10.1111/j.1744-7429.2009.00589.x 

Dewalt, S. J., Schnitzer, S. A., & Denslow, J. S. (2000). Density and diversity of lianas along a chronosequence in a 
central Panamanian lowland forest. Journal of Tropical 
Ecology, 16( 1), 1– 19. https://doi.org/10.1017/S0266467400001231 

Domenach, A.‐M., Roggy, J.‐C., Molino, J.‐F., Marechal, J., Sabatier, D., & Prévost, M.‐F. (2004). Diversity of the 
leguminous tree Rhizobium associations and role of the nitrogen fixation on the stability of the 
rainforest in French Guiana. In S. Gourlet‐Fleury, J.‐M. Guehl, & O. Laroussinie (Eds.), Ecology and 
management of a neotropical rainforest: Lessons drawn from Paracou, a long‐term experimental 
research site in French Guiana (chapter 5, pp. 120– 143). Paris, France: Elsevier. 

Durán, S. M., & Gianoli, E. (2013). Carbon stocks in tropical forests decrease with liana density. Biology 
Letters, 9( 4), 20130301. https://doi.org/10.1098/rsbl.2013.0301 

Durán, S. M., & Sánchez‐Azofeifa, G. A. (2015). Liana effects on carbon storage and uptake in mature and 
secondary tropical forests. Sustainable Development and Biodiversity, 43– 55. 

Epron, D., Bosc, A., Bonal, D., & Freycon, V. (2006). Spatial variation of soil respiration across a topographic 
gradient in a tropical rain forest in French Guiana. Journal of Tropical 
Ecology, 22( 5), 565– 574. https://doi.org/10.1017/S0266467406003415 

Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., … Ian Woodward, F. (2010). Assessing 
uncertainties in a second‐generation dynamic vegetation model caused by ecological scale 
limitations. The New Phytologist, 187( 3), 666– 681. https://doi.org/10.1111/j.1469-8137.2010.03340.x 

Gehring, C. (2004). Liana allometric biomass equations for Amazonian primary and secondary forest. FEMS 
Microbiology Letters, https://doi.org/10.1016/s0378-1127(04)00213-0 

Gerwing, J. J., & Farias, D. L. (2000). Integrating liana abundance and forest stature into an estimate of total 
aboveground biomass for an eastern Amazonian forest. Journal of Tropical 
Ecology, 16( 3), 327– 335. https://doi.org/10.1017/S0266467400001437 

Gianoli, E. (2015). The behavioural ecology of climbing plants. AoB 
Plants, 7, https://doi.org/10.1093/aobpla/plv013 

Ingwell, L. L., Joseph, W. S., Becklund, K. K., Hubbell, S. P., & Schnitzer, S. A. (2010). The impact of lianas on 10 
years of tree growth and mortality on Barro Colorado Island, Panama. The Journal of 
Ecology, 98( 4), 879– 887. 

Ise, T., & Moorcroft, P. R. (2010). Simulating boreal forest dynamics from perspectives of ecophysiology, 
resource availability, and climate change. Ecological 
Research, 25( 3), 501– 511. https://doi.org/10.1007/s11284-009-0680-8 

Isnard, S., & Silk, W. K. (2009). Moving with climbing plants from Charles Darwin's time into the 21st 
century. American Journal of Botany, 96( 7), 1205– 1221. https://doi.org/10.3732/ajb.0900045 

https://doi.org/10.1017/S0266467408005075
https://doi.org/10.1126/sciadv.1501639
https://doi.org/10.5194/gmd-5-1091-2012
https://doi.org/10.1111/j.1744-7429.2009.00589.x
https://doi.org/10.1017/S0266467400001231
https://doi.org/10.1098/rsbl.2013.0301
https://doi.org/10.1017/S0266467406003415
https://doi.org/10.1111/j.1469-8137.2010.03340.x
https://doi.org/10.1016/s0378-1127(04)00213-0
https://doi.org/10.1017/S0266467400001437
https://doi.org/10.1093/aobpla/plv013
https://doi.org/10.1007/s11284-009-0680-8
https://doi.org/10.3732/ajb.0900045


Johnson, D. M., Domec, J. C., Woodruff, D. R., McCulloh, K. A., & Meinzer, F. C. (2013). Contrasting hydraulic 
strategies in two tropical lianas and their host trees. American Journal of 
Botany, 100( 2), 374– 383. https://doi.org/10.3732/ajb.1200590 

Krishna Moorthy, S., Calders, K., di Porcia e Brugnera, M., Schnitzer, S., & Verbeeck, H. (2018). Terrestrial laser 
scanning to detect liana impact on forest structure. Remote 
Sensing, 10( 6), 810. https://doi.org/10.3390/rs10060810 

Kumar, D., & Scheiter, S. (2019). Biome diversity in South Asia – How can we improve vegetation models to 
understand global change impact at regional level? Science of the Total 
Environment, 671, 1001– 1016. https://doi.org/10.1016/j.scitotenv.2019.03.251 

Kurzel, B. P., Schnitzer, S. A., & Carson, W. P. (2006). Predicting liana crown location from stem diameter in three 
panamanian lowland forests. Biotropica, 38( 2), 262– 266. 

Laurance, W. F., Andrade, A. S., Magrach, A., Camargo, J. L. C., Valsko, J. J., Campbell, M., … Laurance, S. 
G. (2014). Long‐term changes in liana abundance and forest dynamics in undisturbed Amazonian 
forests. Ecology, 95( 6), 1604– 1611. https://doi.org/10.1890/13-1571.1 

Ledo, A., & Schnitzer, S. A. (2014). Disturbance and clonal reproduction determine liana distribution and 
maintain liana diversity in a tropical forest. Ecology, 95( 8), 2169– 2178. https://doi.org/10.1890/13-
1775.1 

Letcher, S. G., & Chazdon, R. L. (2012). Life history traits of lianas during tropical forest 
succession. Biotropica, 44( 6), 720– 727. https://doi.org/10.1111/j.1744-7429.2012.00865.x 

Levine, N. M., Zhang, K. E., Longo, M., Baccini, A., Phillips, O. L., Lewis, S. L., … Moorcroft, P. R. (2016). Ecosystem 
heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the 
National Academy of Sciences of the United States of 
America, 113( 3), 793– 797. https://doi.org/10.1073/pnas.1511344112 

Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical 
forests. Science, 349( 6250), 827– 832. 

Lewis, S. L., Malhi, Y., & Phillips, O. L. (2004). Fingerprinting the impacts of global change on tropical 
forests. Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences, 359( 1443), 437– 462. https://doi.org/10.1098/rstb.2003.1432 

Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., … Moorcroft, P. R. (2019). The 
biophysics, ecology, and biogeochemistry of functionally diverse, vertically‐ and horizontally‐
heterogeneous ecosystems: The Ecosystem Demography Model, version 2.2 — Part 1: Model 
description. Geoscientific Model Development Discussions, 1– 53. 

Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990–2005. Current Opinion in Environmental 
Sustainability, 2( 4), 237– 244. https://doi.org/10.1016/j.cosust.2010.08.002 

Martínez‐Izquierdo, L., García, M. M., Powers, J. S., & Schnitzer, S. A. (2016). Lianas suppress seedling growth 
and survival of 14 tree species in a Panamanian tropical 
forest. Ecology, 97( 1), 215– 224. https://doi.org/10.1890/14-2261.1 

Mascaro, J., Schnitzer, S. A., & Carson, W. P. (2004). Liana diversity, abundance, and mortality in a tropical wet 
forest in Costa Rica. Forest Ecology and 
Management, 190( 1), 3– 14. https://doi.org/10.1016/j.foreco.2003.10.002 

McDowell, N., Allen, C. D., Anderson‐Teixeira, K., Brando, P., Brienen, R., Chambers, J., … Xu, X. (2018). Drivers 
and mechanisms of tree mortality in moist tropical forests. The New 
Phytologist, 219( 3), 851– 869. https://doi.org/10.1111/nph.15027 

Medvigy, D., & Moorcroft, P. R. (2011). Predicting ecosystem dynamics at regional scales: An evaluation of a 
terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of 
the Royal Society of London. Series B, Biological 
Sciences, 367( 1586), 222– 235. https://doi.org/10.1098/rstb.2011.0253 

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., & Moorcroft, P. R. (2009). Mechanistic scaling of 
ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal 
of Geophysical Research, 114( G1), https://doi.org/10.1029/2008jg000812 

https://doi.org/10.3732/ajb.1200590
https://doi.org/10.3390/rs10060810
https://doi.org/10.1016/j.scitotenv.2019.03.251
https://doi.org/10.1890/13-1571.1
https://doi.org/10.1890/13-1775.1
https://doi.org/10.1890/13-1775.1
https://doi.org/10.1111/j.1744-7429.2012.00865.x
https://doi.org/10.1073/pnas.1511344112
https://doi.org/10.1098/rstb.2003.1432
https://doi.org/10.1016/j.cosust.2010.08.002
https://doi.org/10.1890/14-2261.1
https://doi.org/10.1016/j.foreco.2003.10.002
https://doi.org/10.1111/nph.15027
https://doi.org/10.1098/rstb.2011.0253
https://doi.org/10.1029/2008jg000812


Moorcroft, P. R., Hurtt, G. C., & Pacala, S. W. (2001). A method for scaling vegetation dynamics: The ecosystem 
demography model (ED). Ecological Monographs, 71, 557– 586. https://doi.org/10.1890/0012‐
9615(2001)071[0557:AMFSVD]2.0.CO;2 

Muller‐Landau, H. C. (2004). Interspecific and Inter-site variation in wood specific gravity of tropical 
trees. Biotropica, 36, 20– 32. https://doi.org/10.1111/j.1744-7429.2004.tb00292.x 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent 
carbon sink in the world's forests. Science, 333( 6045), 988– 993. 

Phillips, O. L., Martínez, R. V., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., … Vinceti, B. (2002). Increasing 
dominance of large lianas in Amazonian forests. Nature, 418( 6899), 770– 774. 

Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M. … Rozendaal, D. M. 
A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530( 7589), 211– 214. 

Popkin, G. (2017). Tropical forests may be carbon sources, not 
sinks. Nature, https://doi.org/10.1038/nature.2017.22692 

Powell, T., Faybishenko, B., Kueppers, L., & Paton, S. (2019): Seven years (2008–2014) of meteorological 
observations plus a synthetic El Nino drought for BCI Panama. 1.0. NGEE Tropics Data Collection. 

Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M. A., Rowland, L., … Moorcroft, P. 
R. (2013). Confronting model predictions of carbon fluxes with measurements of Amazon forests 
subjected to experimental drought. The New 
Phytologist, 200( 2), 350– 365. https://doi.org/10.1111/nph.12390 

Putz, F. E. (1983). Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro Basin, 
Venezuela. Biotropica, 15( 3), 185. https://doi.org/10.2307/2387827 

Putz, F. E. (1984). The natural history of lianas on Barro Colorado Island, 
Panama. Ecology, 65( 6), 1713– 1724. https://doi.org/10.2307/1937767 

Putz, F. E. (1990). Liana stem diameter growth and mortality rates on Barro Colorado Island, 
Panama. Biotropica, 22( 1), 103. https://doi.org/10.2307/2388725 

Rodríguez‐Ronderos, M. E., Elizabeth, R.‐R., Bohrer, G., Sanchez‐Azofeifa, A., Powers, J. S., & Schnitzer, S. 
A. (2016). Contribution of lianas to plant area index and canopy structure in a Panamanian 
forest. Ecology, 97( 12), 3271– 3277. https://doi.org/10.1002/ecy.1597 

Roeder, M., Hölscher, D., & Ferraz, I. D. K. (2010). Liana regeneration in secondary and primary forests of central 
Amazonia. Plant Ecology & Diversity, 3( 2), 165– 174. https://doi.org/10.1080/17550874.2010.484555 

Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.‐A., & Blanc, L. (2010). Contrasting above‐ground biomass 
balance in a Neotropical rain forest. Journal of Vegetation Science, https://doi.org/10.1111/j.1654-
1103.2010.01175.x 

Sanches, M. C., & Válio, I. F. M. (2008). Photosynthetic response of two tropical liana species grown under 
different irradiances. Photosynthetica, 46( 4), 557– 566. https://doi.org/10.1007/s11099-008-0094-9 

Schnitzer, S. A. (2014). Increasing liana abundance in neotropical forests: Causes and consequences. In S. A. 
Schnitzer, F. Bongers, R. J. Burnham, & F. E. Putz (Eds.), Ecology of 
lianas. https://doi.org/10.1002/9781118392409.ch30 

Schnitzer, S. A. (2018). Testing ecological theory with lianas. The New 
Phytologist, 220( 2), 366– 380. https://doi.org/10.1111/nph.15431 

Schnitzer, S. A., & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends in Ecology & 
Evolution, 17, 223– 230. https://doi.org/10.1016/S0169-5347(02)02491-6 

Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance and biomass in tropical forests: Emerging 
patterns and putative mechanisms. Ecology Letters, 14( 4), 397– 406. https://doi.org/10.1111/j.1461-
0248.2011.01590.x 

Schnitzer, S. A., & Carson, W. P. (2001). Treefall gaps and the maintenance of species diversity in a tropical 
forest. Ecology, 82( 4), 913– 919. https://doi.org/10.1890/0012-9658(2001)082[0913:TGATMO]2.0.CO;2 

Schnitzer, S. A., & Carson, W. P. (2010). Lianas suppress tree regeneration and diversity in treefall gaps. Ecology 
Letters, 13( 7), 849– 857. https://doi.org/10.1111/j.1461-0248.2010.01480.x 

https://doi.org/10.1890/0012-9615(2001)071%5B0557:AMFSVD%5D2.0.CO;2
https://doi.org/10.1890/0012-9615(2001)071%5B0557:AMFSVD%5D2.0.CO;2
https://doi.org/10.1111/j.1744-7429.2004.tb00292.x
https://doi.org/10.1038/nature.2017.22692
https://doi.org/10.1111/nph.12390
https://doi.org/10.2307/2387827
https://doi.org/10.2307/1937767
https://doi.org/10.2307/2388725
https://doi.org/10.1002/ecy.1597
https://doi.org/10.1080/17550874.2010.484555
https://doi.org/10.1111/j.1654-1103.2010.01175.x
https://doi.org/10.1111/j.1654-1103.2010.01175.x
https://doi.org/10.1007/s11099-008-0094-9
https://doi.org/10.1002/9781118392409.ch30
https://doi.org/10.1111/nph.15431
https://doi.org/10.1016/S0169-5347(02)02491-6
https://doi.org/10.1111/j.1461-0248.2011.01590.x
https://doi.org/10.1111/j.1461-0248.2011.01590.x
https://doi.org/10.1890/0012-9658(2001)082%5B0913:TGATMO%5D2.0.CO;2
https://doi.org/10.1111/j.1461-0248.2010.01480.x


Schnitzer, S. A., DeWalt, S. J., & Chave, J. (2006). Censusing and measuring lianas: A quantitative comparison of 
the common methods1. Biotropica, 38( 5), 581– 591. https://doi.org/10.1111/j.1744-7429.2006.00187.x 

Schnitzer, S. A., Mangan, S. A., Dalling, J. W., Baldeck, C. A., Hubbell, S. P., Ledo, A., … Yorke, S. R. (2012). Liana 
abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE, 7( 12), 
e52114. https://doi.org/10.1371/journal.pone.0052114 

Schnitzer, S. A., van der Heijden, G. M. F., & Powers, J. S. (2016). Reply to Verbeeck and Kearsley: Addressing the 
challenges of including lianas in global vegetation models. Proceedings of the National Academy of 
Sciences of the United States of America, 113( 1), E5– E6. https://doi.org/10.1073/pnas.1521823113 

Stahl, C. (2010). Variations saisonnières des flux de CO2 et H2O au niveau des feuilles et des troncs des arbres de 
la canopée en forêt tropicale humide guyanaise, Ph.d. thesis, Université Henri Poincaré de 
Nancy, Nancy, Lorraine, France, in French. 

Stahl, C., Burban, B., Goret, J.‐Y., & Bonal, D. (2011). Seasonal variations in stem CO2 efflux in the neotropical 
rainforest of French Guiana. Annals of Forest Science, 68( 4), 771– 782. https://doi.org/10.1007/s13595-
011-0074-2 

Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., & Bonal, D. (2013). Depth of soil water uptake by tropical 
rainforest trees during dry periods: Does tree dimension 
matter? Oecologia, 173( 4), 1191– 1201. https://doi.org/10.1007/s00442-013-2724-6 

Stewart, T. E., & Schnitzer, S. A. (2017). Blurred lines between competition and 
parasitism. Biotropica, 49( 4), 433– 438. https://doi.org/10.1111/btp.12444 

Tang, Y., Kitching, R. L., & Cao, M. (2012). Lianas as structural parasites: A re-evaluation. Chinese Science 
Bulletin, 57, 307. https://doi.org/10.1007/s11434-011-4690-x 

Tymen, B., Réjou‐Méchain, M., Dalling, J. W., Fauset, S., Feldpausch, T. R., Norden, N., … Chave, 
J. (2015). Evidence for arrested succession in a liana‐infested Amazonian forest. The Journal of 
Ecology, 104( 1), 149– 159. https://doi.org/10.1111/1365-2745.12504 

van der Heijden, G. M. F., & Phillips, O. L. (2009). Liana infestation impacts tree growth in a lowland tropical 
moist forest. Biogeosciences, 6( 10), 2217– 2226. https://doi.org/10.5194/bg-6-2217-2009 

van der Heijden, G. M. F., Powers, J. S., & Schnitzer, S. A. (2015). Lianas reduce carbon accumulation and storage 
in tropical forests. Proceedings of the National Academy of Sciences of the United States of 
America, 112( 43), 13267– 13271. https://doi.org/10.1073/pnas.1504869112 

van der Heijden, G. M., Schnitzer, S. A., Powers, J. S., & Phillips, O. L. (2013). Liana impacts on carbon cycling, 
storage and sequestration in tropical 
forests. Biotropica, 45( 6), 682– 692. https://doi.org/10.1111/btp.12060 

Verbeeck, H., & Kearsley, E. (2015). The importance of including lianas in global vegetation models. Proceedings 
of the National Academy of Sciences of the United States of America, 113( 1), E4– E4. 

Visser, M. D., Muller‐Landau, H. C., Schnitzer, S. A., de Kroon, H., Jongejans, E., & Joseph, W. S. (2018). A host‐
parasite model explains variation in liana infestation among co‐occurring tree species. The Journal of 
Ecology, 106( 6), 2435– 2445. https://doi.org/10.1111/1365-2745.12997 

Visser, M. D., Schnitzer, S. A., Muller‐Landau, H. C., Jongejans, E., de Kroon, H., Comita, L. S., … Wright, S. 
J. (2017). Tree species vary widely in their tolerance for liana infestation: A case study of differential host 
response to generalist parasites. The Journal of 
Ecology, 106( 2), 781– 794. https://doi.org/10.1111/1365-2745.12815 

Wang, D., LeBauer, D., & Dietze, M. (2013). Predicting yields of short‐rotation hybrid poplar (Populus spp.) for 
the United States through model‐data synthesis. Ecological Applications: A Publication of the Ecological 
Society of America, 23( 4), 944– 958. 

Wyka, T. P., Oleksyn, J., Karolewski, P., & Schnitzer, S. A. (2013). Phenotypic correlates of the lianescent growth 
form: A review. Annals of Botany, 112( 9), 1667– 1681. https://doi.org/10.1093/aob/mct236 

Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., & Guan, K. (2016). Diversity in plant hydraulic traits explains 
seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. The New 
Phytologist, 212( 1), 80– 95. https://doi.org/10.1111/nph.14009 

 

https://doi.org/10.1111/j.1744-7429.2006.00187.x
https://doi.org/10.1371/journal.pone.0052114
https://doi.org/10.1073/pnas.1521823113
https://doi.org/10.1007/s13595-011-0074-2
https://doi.org/10.1007/s13595-011-0074-2
https://doi.org/10.1007/s00442-013-2724-6
https://doi.org/10.1111/btp.12444
https://doi.org/10.1007/s11434-011-4690-x
https://doi.org/10.1111/1365-2745.12504
https://doi.org/10.5194/bg-6-2217-2009
https://doi.org/10.1073/pnas.1504869112
https://doi.org/10.1111/btp.12060
https://doi.org/10.1111/1365-2745.12997
https://doi.org/10.1111/1365-2745.12815
https://doi.org/10.1093/aob/mct236
https://doi.org/10.1111/nph.14009

	Modeling the Impact of Liana Infestation on The Demography and Carbon Cycle of Tropical Forests
	Recommended Citation
	Authors

	tmp.1586880310.pdf._XCL6

