187 research outputs found

    When global climate models are able to differentiate between an elephant and a big mouse

    Get PDF
    Um alle 2,5 Kilometer auf der Erde den Zustand der Atmosphäre mit einem Klimamodell nachzurechnen, braucht es 83 Millionen Punkte. Nur so, und im Gegensatz zu gängigen Klimamodellen, die mit einer typischen Auflösung von rund 100 Kilometer arbeiten, lässt sich die Vielfalt der Wolken und ihre einzigartigen Formen, die manchmal an einen Elefanten, manchmal an eine große Maus erinnern, wiedergeben. Sind aber so viele Details nötig? Die Autoren präsentieren die Ergebnisse einer internationalen Vergleichsstudie, in der zum ersten Mal acht solcher neuartigen Klimamodelle gerechnet wurden.Eighty-three million points are needed to represent the atmospheric state every 2.5 km on Earth. Only such a grid spacing allows climate modelers to represent in their models the diversity of clouds, their small-scale details and their unique shapes which, at times, may remember elephants and, at other times, big mice. But are so many details that cannot be captured by current state-of-the-art climate models really necessary? In the following the authors present the results of an intercomparison exercise where, for the first time, eight of these next-generation climate models were run

    Effect of the Milky Way on Magellanic Cloud structure

    Get PDF
    A combination of analytic models and n-body simulations implies that the structural evolution of the Large Magellanic Cloud (LMC) is dominated by its dynamical interaction with the Milky Way. Although expected at some level, the scope of the involvement has significant observational consequences. First, LMC disk orbits are torqued out of the disk plane, thickening the disk and populating a spheroid. The torque results from direct forcing by the Milky Way tide and, indirectly, from the drag between the LMC disk and its halo resulting from the induced precession of the LMC disk. The latter is a newly reported mechanism that can affect all satellite interations. However, the overall torque can not isotropize the stellar orbits and their kinematics remains disk-like. Such a kinematic signature is observed for nearly all LMC populations. The extended disk distribution is predicted to increase the microlensing toward the LMC. Second, the disk's binding energy slowly decreases during this process, puffing up and priming the outer regions for subsequent tidal stripping. Because the tidally stripped debris will be spatially extended, the distribution of stripped stars is much more extended than the HI Magellanic Stream. This is consistent with upper limits to stellar densities in the gas stream and suggests a different strategy for detecting the stripped stars. And, finally, the mass loss over several LMC orbits is predicted by n-body simulation and the debris extends to tens of kiloparsecs from the tidal boundary. Although the overall space density of the stripped stars is low, possible existence of such intervening populations have been recently reported and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contsins reports on four research projects split into two sections.National Science Foundation (Grant GK-1165)National Science Foundation (Grant GK-57

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on thirteen research projects split into two sections.National Science Foundation (Grant GK-57)National Science Foundation (Grant GK-614

    Smart Lighting Clinical Testbed Pilot Study on Circadian Phase Advancement

    Get PDF
    Objective: Lighting is a strong synchronizer for circadian rhythms, which in turn drives a wide range of biological functions. The objective of our work is a) to construct a clinical in-patient testbed with smart lighting, and b) evaluate its feasibility for use in future clinical studies. Methods: A feedback capable, variable spectrum lighting system was installed at the University of New Mexico Hospital. The system consists of variable spectrum lighting troffers, color sensors, occupancy sensors, and computing and communication infrastructure. We conducted a pilot study to demonstrate proof of principle, that 1) this new technology is capable of providing continuous lighting and sensing in an active clinical environment, 2) subject recruitment and retention is feasible for round-the-clock, multi-day studies, and 3) current techniques for circadian regulation can be deployed in this unique testbed. Unlike light box studies, only troffer-based lighting was used, and both lighting intensity and spectral content were varied. Results: The hardware and software functioned seamlessly to gather biometric data and provide the desired lighting. Salivary samples that measure dim-light melatonin onset showed phase advancement for all three subjects. Conclusion: We executed a five-day circadian rhythm study that varied intensity, spectrum, and timing of lighting as proof-of-concept or future clinical studies with troffer-based, variable spectrum lighting. Clinical Impact: The ability to perform circadian rhythm experiments in more realistic environments that do not overly constrain the subject is important for translating lighting research into practice, as well as for further research on the health impacts of lighting

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains research objectives and reports on three research projects.National Science Foundation (Grant GK-1165)National Science Foundation (Grant GK-57

    Left atrial appendage volume is an independent predictor of atrial arrhythmia recurrence following cryoballoon pulmonary vein isolation in persistent atrial fibrillation

    Get PDF
    PurposePulmonary vein isolation (PVI) is the cornerstone of atrial fibrillation (AF) ablation in persistent AF (persAF), and cryoballoon PVI emerged as an initial ablation strategy. Symptomatic atrial arrhythmia recurrence following successful PVI in persAF is observed more frequently than in paroxysmal AF. Predictors for arrhythmia recurrence following cryoballoon PVI for persAF are not well described, and the role of left atrial appendage (LAA) anatomy is uncertain.MethodsPatients with symptomatic persAF and pre-procedural cardiac computed tomography angiography (CCTA) images undergoing initial second-generation cryoballoon (CBG2) were enrolled. Left atrial (LA), pulmonary vein (PV) and LAA anatomical data were assessed. Clinical outcome and predictors for atrial arrhythmia recurrence were evaluated by univariate and multivariate regression analysis.ResultsFrom May 2012 to September 2016, 488 consecutive persAF patients underwent CBG2-PVI. CCTA with sufficient quality for measurements was available in 196 (60.4%) patients. Mean age was 65.7 ± 9.5 years. Freedom from arrhythmia was 58.2% after a median follow-up of 19 (13; 29) months. No major complications occurred. Independent predictors for arrhythmia recurrence were LAA volume (HR 1.082; 95% CI, 1.032 to 1.134; p = 0.001) and mitral regurgitation ≥ grade 2 (HR, 2.49; 95% CI 1.207 to 5.126; p = 0.013). LA volumes ≥110.35 ml [sensitivity: 0.81, specificity: 0.40, area under the curve (AUC) = 0.62] and LAA volumes ≥9.75 ml (sensitivity: 0.56, specificity 0.70, AUC = 0.64) were associated with recurrence. LAA-morphology, classified as chicken-wing (21.9%), windsock (52.6%), cactus (10.2%) and cauliflower (15.3%), did not predict outcome (log-rank, p = 0.832).ConclusionLAA volume and mitral regurgitation were independent predictors for arrhythmia recurrence following cryoballoon ablation in persAF. LA volume was less predictive and correlated with LAA volume. LAA morphology did not predict the clinical outcome. To improve outcomes in persAF ablation, further studies should focus on treatment strategies for persAF patients with large LAA and mitral regurgitation

    Skin friction blistering: computer model

    Full text link
    BACKGROUND/PURPOSE: Friction blisters, a common injury in sports and military operations, can adversely effect or even halt performance. Given its frequency and hazardous nature, recent research efforts appear limited. Blistering can be treated as a delamination phenomenon; similar issues in materials science have been extensively investigated in theory and experiment. An obstacle in studying blistering is the difficulty of conducting experiment on humans and animals. Computer modeling thus becomes a preferred tool. METHOD: This paper used a dynamic non-linear finite-element model with a blister-characterized structure and contact algorithm for outer materials and blister roof to investigate the effects on deformation and stress of an existing blister by changing the friction coefficient and elastic modulus of the material in contact with the blister. RESULTS: Through the dynamics mode and harmonic frequency approach, we demonstrated that the loading frequency leads to dramatic changes of displacement and stress in spite of otherwise similar loading. Our simulations show that an increased friction coefficient does not necessarily result in an increase in either the stress on the hot spot or blister deformation; local maximum friction stress and Von Mises stress exist for some friction coefficients over the wide range examined here. In addition, the stiffness of contact material on blistering is also investigated, and no significant effects on deformation and Von Mises stress are found, again at the range used. The model and method provided here may be useful for evaluating loading environments and contact materials in reducing blistering incidents. CONCLUSION: The coupling finite-element model can predict the effects of friction coefficient and contacting materials' stiffness on blister deformation and hot spot stress
    • …
    corecore