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ABSTRACT

A combination of analytic models and n-body simulations implies that the structural evolution of the
Large Magellanic Cloud (LMC) is dominated by its dynamical interaction with the Milky Way. Al-
though expected at some level, the scope of the involvement has significant observational consequences.
First, LMC disk orbits are torqued out of the disk plane, thickening the disk and populating a spheroid.
The torque results from direct forcing by the Milky Way tide and, indirectly, from the drag between the
LMC disk and its halo resulting from the induced precession of the LMC disk. The latter is a newly re-
ported mechanism that can affect all satellite interations. However, the overall torque can not isotropize
the stellar orbits and their kinematics remains disk-like.Such a kinematic signature is observed for
nearly all LMC populations. The extended disk distributionis predicted to increase the microlensing
toward the LMC. Second, the disk’s binding energy slowly decreases during this process, puffing up
and priming the outer regions for subsequent tidal stripping. Because the tidally stripped debris will
be spatially extended, the distribution of stripped stars is much more extended than the HI Magellanic
Stream. This is consistent with upper limits to stellar densities in the gas stream and suggests a different
strategy for detecting the stripped stars. And, finally, themass loss over several LMC orbits is predicted
by n-body simulation and the debris extends to tens of kiloparsecs from the tidal boundary. Although
the overall space density of the stripped stars is low, possible existence of such intervening populations
have been recently reported and may be detectable using 2MASS.

1. INTRODUCTION

The Magellanic Clouds are a natural laboratory for in-
vestigating the evolution of stellar populations in dynami-
cally interacting systems. Their populations are well stud-
ied and provide a basis for standard candle and popula-
tion evolution studies. In addition, a variety of dynamical
studies and simulations exploit the Milky Way–Clouds–
Magellanic Stream interaction to both infer its complex
history and constrain Milky Way mass models (Fujimoto
& Sofue 1976, Lin & Lynden-Bell 1977, Davies & Wright
1977, Lin & Lynden-Bell 1982, Murai & Fujimoto 1986,
Lin et al. 1995; see Lin et al. for a thorough histori-
cal discussion). The link between chemical evolution and
externally driven structural evolution is a hard problem,
and to date, there has been little work devoted to a self-
consistent dynamical picture of Cloud evolution. To this
end, this paper focuses on one specific aspect—the dy-
namical interaction between the Milky Way and the Large
Magellanic Cloud—and ignores the likelihood of a signif-
icant interaction with the Small Magellanic Cloud (SMC)
in the past or the possibility that the SMC originated in a
tidal disruption event. This simplified scenario by itself
admits a rich set of interacting mechanisms.

Recent work by myself and others points out that time-
dependent tidal forcing can have significant evolutionary
consequences for globular clusters and dwarf or canni-

balized galaxies (Chernoff et al. 1986, Aguilar et al.
1988, Weinberg 1994c, Gnedin & Ostriker 1997, Murali
& Weinberg 1997ab, Vesperini 1997, Weinberg 1997).
The same physics applies to non-isotropic distributions
such as disks or disks embedded in halos. For example,
Sellwood et al. (1998) explored the importance of these
resonant mechanisms to thickening host disks by dwarfs
and excitation of bending waves. Weinberg (1998, Paper
I) found that the resonant interaction between the Milky
Way and LMC is sufficient to excite a warp and cause
lopsided asymmetries, depending on the Galactic halo po-
tential and LMC mass. In that work, the LMC was struc-
turally fixed. Here, we turn the tables by structurally fix-
ing the Milky Way and applying the same physics to LMC
evolution.

It is straightforward to see that the magnitude of such
a disturbance to the LMC is large. Either the subtended
size of the LMC on the sky or the rotation curve com-
bined with an estimate of the Milky Way mass enclosed
in the LMC orbit leads to a tidal radius of approximately
11 kpc. At 5 kpc from the center, the ratio of the tidal
force to the self force has only dropped to approximately
20% assuming a flat rotation curve, a significant pertur-
bation. Although this ratio drops quickly further inward,
the effect of the tidal force is amplified by a spectrum
of resonances between the LMC–Milky Way orbital fre-
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quencies and internal LMC orbital frequencies. Simulta-
neously, the LMC disk axis precesses due to the coupling
with its orbit about the Galaxy. This induces an additional
interaction between the LMC disk and halo. Altogether,
these mechanisms result in enhanced angular momentum
and energy transfer between the orbit and internal mo-
tions. They thicken the disk, populate the spheroid and
drive mass loss. The latter mechanism has direct analogy
to globular cluster evolution (see refs. cited above).

This paper explores this basic picture as follows. First,
§2 summarizes the inference of the LMC orbit and mass
needed to estimate the time-dependent tidal force. We will
then explore the underlying dynamical interaction in sev-
eral steps. Analytically, effectively irreversible changes
in energy and angular momentum occur at resonances be-
tween the frequencies of the applied perturbation and the
stellar orbital frequencies. First, I will describe the results
of a restricted computation which sums the effect of all
the resonances directly. This idealized model treats the
evolution of a disk without self-gravity in a fixed halo po-
tential (§3.1). We find that the disk is notably heated and
thickened in several gigayears. Although the omission of
self-gravity surely leads to an overestimate of the heating,
the simple model serves to illustrate the potential impor-
tance of the underlying physical mechanisms.

This example is followed up in §3.2 with a full n-body
simulation using the force algorithm described in Wein-
berg (1999). This code uses a basis expansion tailored to
the density profile and is well-suited to following a slowly
changing system. The collisionless evolution is gravita-
tionally self-consistent with the caveat that the Galactic
mass model and LMC orbit remains fixed. The n-body
results substantiate the simple restricted example in §3.1,
although the rate of disk thickening is smaller due to the
self-gravity of the disk. Specifically, the simulations pre-
dict a thickening rate of 70 pc/Gyr at a roughly constant
rate over the duration (about 4 Gyr). The tail of the
torqued distribution populates the LMC halo region. At
the same time, the energy input does work on the poten-
tial and causes overall expansion of the disk. This offsets
the increase in velocity dispersion that might be observed
from heating in a fixed potential; in fact, expansion wins
and the velocity dispersion observed at a 45◦ inclination
at one disk scale length is very slowly dropping.

These results lead to a number of interesting predictions
and implications. First, the stellar component should be
as extended as the halo. Moreover, this is done without
isotropizing the distribution since a modest change in di-
rection of the orbital plane (and therefore its angular mo-
mentum vector) is relatively easy. In fact, Olszewski et
al. (1996) outline the evidence that nearly all compo-
nents of the LMC have disk-like kinematics regardless of
their extent. Second, the dark halo and the kinematically
evolved and extended stellar component are preferentially
stripped. The stripped material continues to orbit with the

LMC and slowly spread in phase. Because the stripped
stars are not part of the disk, they do not lie along the
HI-defined Magellanic Stream but rather in a much more
diffuse distribution. In other words, this scenario does not
suggest looking in the gas stream for the stars. Finally, a
thickened bound stellar component in the LMC and an ex-
tended unbound cloud surrounding the LMC will increase
the rate of self microlensing and we will estimate the ef-
fect in §4. A final discussion with implications for the
LMC and satellite systems in general is presented in §5
followed by a summary of results in §6.

2. MASS, STRUCTURE AND ORBIT OF LMC

There have been a wide variety of LMC censuses, most
of which treat the LMC as a galaxy and use the stan-
dard mass and mass density estimates: rotation curves,
star counts, surface brightness profiles. Two relatively re-
cent rotation curve studies, Meatheringham et al. (1988)
and Schommer et al. (1992), estimate LMC masses of
6× 109 M⊙ and 1.5× 1010M⊙. Similar limits follow
from carbon star studies by Kunkel et al. (1997b). The
main difference between these determinations is not the
value ofVc for the Cloud but the radial extent of the ro-
tation curve. Alternatively, from the Milky Way’s point
of view, the LMC is similar to an oversized globular clus-
ter. Its tidal radius is measurable and depends on both
the Milky Way rotation curve and the LMC mass (and,
weakly, its profile). A preliminary estimate of the tidally
inferred LMC mass (Nikolaev & Weinberg 1998) yields
2× 1010M⊙ but is consistent with the Schommer et al.
estimate. A brief description of this result is provided in
the Appendix.

Recent estimates of the LMC space velocity from
archival plate (Jones et al. 1994) and Hipparcos (Kroupa
& Bastian 1997) proper motions both lead to consistent
estimates of the LMC orbital plane. The procedure used
here to estimate the orbit is described in Weinberg (1995).
For the Milky Way halo, I choose aW0 = 3 King model
(1966) withrt = 200kpc and mass scaled to 4×1011M⊙

(Kochanek 1996). The rotation curve due to the Galaxy,
then, is approximately flat in the region of the LMC orbit.
Together with a disk, the overall rotation curve is a plau-
sible representation of the observed Milky Way. With this
halo model, both the space velocities estimated by Jones
et al. and Kroupa & Bastian yield a similar perigalacticon
of 46 kpc with apogalacticons of 72 kpc and 120 kpc. For
lack of motivation to favor one of these over the other, I
adopt the mean apogalacticon.

3. MILKY WAY HEATING OF THE LMC

Paper I described the excitation of structure in the Milky
Way halo due to non-local resonant excitation that occurs
well inside the LMC’s orbit. From the LMC’s point of
view, the Milky Way is in orbit about the LMC and the
same dynamical coupling that raises wakes in the halo af-
fects the LMC disk. This periodic forcing changes the
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angular momenta of orbits at commensurate frequencies
and adds energy to the disk. In the absence of commen-
surabilities, the tidal forcing would be adiabatically re-
versible and not lead to long-term evolution (e.g. Wein-
berg 1994a). This is the same physics that “heats” stel-
lar orbits in globular clusters (Weinberg 1994c, Murali &
Weinberg 1997a, Gnedin & Ostriker 1997). In the globu-
lar cluster case, however, one is primarily concerned with
the work done by the external perturbation. In a disk, a
change only in the orbital angular momentum vector, with
little energy transfer, can change the disk morphology.

The first subsection below illustrates the evolution
based on this dynamical mechanism. The calculation is
straightforward in the idealized scenario of a spheroid-
dominated potential and axisymmetry and without ex-
plicit disk self gravity. It predicts significant evolution
on a gigayear time scale. Including disk self gravity
will lengthen the time scale but nonetheless this rela-
tively short time scale motivates the more complete n-
body treatment in §3.2.

3.1. Solution of Boltzmann equation

To estimate the evolution, I present a solution of the
time-dependent collisional Boltzmann equation for orbits
in a fixed potential. The angular momenta of individ-
ual stars change during passage through resonances as the
disk slowly evolves. The change in the conserved angular
momenta depends on the direction that an orbit crosses a
particular resonance (see Henrard 1982 for discussion). A
galaxy will have different phase-space densities on either
side of the resonance resulting in a net gain or loss for the
passage. The net change in the phase-space distribution
function, then, due to the resonant heating takes the form
of a collisional Boltzmann equation where the right-hand-
side collision term depends on the gradient of the phase-
space distribution function (see Appendix for additional
detail). For simplicity, we assume that the background
gravitational potential is constant in time, dominated by
the halo. The now linear partial differential equation may
be solved by finite-difference on a three-dimensional grid
(e.g. E, J, Jz). The z-axis is perpendicular to the disk
plane. The ratio of the z-axis angular momentum to the
total angular momentum is the cosine of the orbital-plane
inclination angle,β: cosβ = Jz/J. At every time step, the
potential is recomputed and any phase space whose stars
have apocenters larger than the tidal radius are deleted
from the grid. Although, these weakly bound stars may
linger near the tidal boundary for some time in reality (Lee
& Ostriker 1987), thisone waytidal boundary is easy to
implement. AW0 = 1.5 King model was chosen to rep-
resent the LMC gravitational potential and approximately
fits the rotation curve.

Figure 1 shows the cumulative distribution of mass
above the disk plane as the system evolves,M(Z). Af-
ter approximately 1 Gyr, 1% of the disk mass has a height

larger than 6 kpc and 10% above 3 kpc. The thickening
occurs from the outside in, appearing as a flared popula-
tion that fills in at smaller radii with time. This leads to a
very thick disk or flattened spheroid population.

Figure 2 shows the edge-on projected surface mass den-
sity. One sees that the tidal envelope is filled in a gigayear,
and over longer time scales the disk scale height is in-
creasing (cf. the 10−1 contour in Fig. 1). This trend is
more apparent in phase space: the orbits at low binding
energy are heated first and those at successively higher
binding energy as time goes on. This is clearly seen in
the energy-orbital inclination (E–cosβ) projection of the
phase space distribution (Fig. 3): the high binding energy
inclined orbits—the upper and lower left corners–are suc-
cessively filled in with time.

Also worthy of note is that logM(Z) is roughly linear
with Z at times larger than 1 Gyr. This suggests an expo-
nential profile which has been recently reported for the RR
Lyrae distribution in the LMC halo (Kinman et al. 1991).
The sharp roll over at the tidal radius is suggestive of the
observed star-count profile but may be an artifact of the
one-way tidal boundary.

3.2. N-body solution

The idealized semi-analytic model suggests that the
LMC disk structure will change on a 109 year time scale,
roughly an LMC orbital time. Without disk self gravity,
the calculation in §3.1 is expected to overestimate the disk
thickening due to resonant heating, although it may un-
derestimate the thickening due to self-consistent readjust-
ment to the external work. In this section, we examine the
details of the evolution by n-body simulation. To limit the
number of parameters and difficulty of the simulation, we
ignore orbital decay.

3.2.1. Force solver

In order to estimate the evolution on large scales over
long time periods, we need to suppress small scale noise
as much as possible and this need is satisfied by the
biorthogonal expansion technique (e.g. Clutton-Brock
1972, 1973, Kalnajs 1976, Fridman & Polyachenko 1984,
Hernquist & Ostriker 1992). The approach uses the eigen-
functions of the Laplacian to construct a complete set of
orthogonal functions that satisfies the Poisson equation.
The projection of the ensemble particle positions on each
member of the orthogonal series yields a set of coeffi-
cients, similar to determining a potential from a charge
distribution in electrostatics. These coefficients may then
be used to describe the density, gravitational potential or
force in the expansion code. The most efficient imple-
mentations use analytically derived recursion relations to
generate the functions. The expansion converges quickly
and is most efficient when the lowest order function is a
good fit to the underlying equilibrium. However, most as-
tronomical distributions do not match the available sets of
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FIG. 1.— LMC disk heating by the Milky Way. Contours and wire frame show the cumulative distribution of stars at a heightZ or larger. The
curves show mass fractions 1,10−1,10−2,10−3,10−4 from bottom to top.

FIG. 2.— The projected surface density distribution for the edge on view of disk at four times shown in Fig. 1. The smooth colorvariation from
red to green to blue reflects logarithmically change in projected surface density over six orders of magnitude from the peak.
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FIG. 3.— As in Fig. 2 but showing the phase space density in theE and cosβ ≡ Jz/J plane. NB: the evolution is both axisymmetric and
symmetric around the midplane (cosβ = 0).

special functions. The problem described in this paper
motivated the algorithm developed in Weinberg (1999)
which allows the adaptive construction of both spheri-
cal and three-dimensional cylindrical bases and this algo-
rithm is used here.

Another advantage of this force solver is its ability to
separately follow distinct kinematic components. Each
component may be tied to a basis tailored to its geom-
etry; this helps remove the bottleneck in simultaneously
resolving multiple spatial scales. In particular, we can as-
sign the halo particles to a spherical basis and the disk
particles to a cylindrical basis. These are gravitationally
coupled through the force evaluation. This procedure is
easily extended. For example, a simulation which follows
the response of the Milky Way halo simultaneously can
be implemented by specifying an appropriate basis for the
halo and following the halo response and its back-reaction
on the LMC directly. This would increase the run time
of simulations described here by only about 30%. These
simulations will be performed in the next phase of this
project.

Experimentation reveals that multiple expansion cen-
ters may introduce numerical feedback and excite oscil-
lations. In principle, each component may be uncoupled
as long as feedback is suppressed. For simulations here,
the halo expansion center is tied to the disk center. The

force solver can easily resolve small offsets correctly so
this is not a limitation for this application.

A parallel code with these features is implemented on
a Linux-based cluster using MPI. Each node in the clus-
ter has two processors; the algorithm was multi-threaded
on each node to reduce the memory overhead. This al-
lows the computation to be in core for all harmonic orders
used here. The code performs load balancing but this is
usually not required for the dedicated cluster. In practice,
the average CPU load efficiency is approximately 90% for
N = 105 on 32 processors and improves for larger numbers
of particles.

3.2.2. Parameters

The resolution of the force computation is set both by
controlling the truncation in the series expansion and par-
ticle number. In the spherical case, one sets the max-
imum radial order,nmax and the maximum angular or-
der lmax. In the cylindrical case, to start one has three
indices corresponding the maximum radial order,n′max,
the maximum angular ordermmax, and maximum verti-
cal order. However, as described in Weinberg (1999),
one can only adaptively choose the radial profile for the
three-dimensional cylindrical set. For a particular spa-
tial distribution and basis, the signal-to-noise ratio de-
creases with increasing order. We can empirically find
new orthogonal functions to best represent the underly-
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ing particle distribution to minimize noise. Here, this
is done once based on the initial conditions (see Wein-
berg 1996, 1999 for details) and yields a two-dimensional
indexed set,µmax,mmax. For problems here, we choose
lmax,mmax= 2 or 4,nmax,n′nmax= 10, andµmax= 10. Within
these limits, low signal-to-noise ratio components may be
adaptively truncated. The evolution shows little difference
to tests using larger series. The vertical expansion also
requires specification of an outer boundary that is set to
the initial tidal radius. Outside this radius, the force from
the cylindrical component reverts to a monopole spherical
force estimate. Finally, the time step is chosen to be ap-
proximately 1/100 of the shortest characteristic time scale
(inner disk vertical motion) and the time evolution is fol-
lowed using time-centered leap frog.

The total mass of the LMC is taken to be 2×1010M⊙,
divided evenly between a halo and an exponential-sech2

disk with a = 1.6kpc andh = 200pc (e.g. Wu 1994). The
tidally truncated halo is represented by a King model with
a core radius small enough to stabilize the disk against
rapid bar formation. The potential of this halo profile in-
cludes a centrifugal potential during disk generation to
better account for the non-inertial forces in the simula-
tion. The LMC halo and orbit and disk generation by
the quadratic programming technique is the same as that
describe in Weinberg (1998). The simulations described
here usedN = 4× 105 particles with 1× 105 in the disk
and 3× 105 for the halo component. The large number
of halo particles is needed to suppress the noise fluctua-
tions which can disturb the disk. For the disk, the masses
of the particles were scaled to produce a uniform number
density distribution in cylindrical radius in order to better
resolve the evolution of the outer disk. The halo particles
have equal mass.

The external force on the LMC is expressed in the non-
inertial frame of the center of mass of the LMC’s orbit
about the Milky Way:

ftot(x) = fsel f(x) + Fgal(x + R(t)) − Fgal(R(t))

−2Ω(t)×v −Ω(t)× (Ω(t)×x)− Ω̇(t)×x, (1)

wherex is the position relative to the center of the LMC,
R(t) is the center of the LMC relative to the Milky Way,
fsel f is the force of the LMC,Fgal is the force of the Milky
Way halo on the LMC andΩ(t) is the time-dependent az-
imuthal frequency of the LMC about its orbit. Because
the distance between the LMC tidal radius and the LMC
galactocentric radius is not small, the Galactic component
tidal force is evaluated by explicit difference rather than
Taylor expansion of the underlying halo potential model.

The LMC orbit,R(t), is assumed to be fixed, that is, we
ignore dynamical friction. This was done to reduce the
dynamical complexity and number of parameters in favor
of focusing on the internal evolution. Finally, because the

main goal is to look at the internal dynamical evolution of
LMC, we ignore the effect of the SMC (e.g. Murai & Fu-
jimoto 1980, Lin et al. 1995). Present day tidal effects are
dominated by the Milky Way, although a close encounter
with the SMC in past would also be a significant structure-
changing event for the LMC.

3.2.3. Results

The galaxy is constructed to be in equilibrium in ab-
sence of thetime-dependenttidal field. During the first
6× 108 years1), the system achieves a new approximate
equilibrium. A slow ramp-up of the tidal terms in equa-
tion (1) yield larger initial transients. During the initial
virialization phase, the disk responds strongly in its outer
parts to the full non-inertial set of forces although the to-
tal mass involved is small. The inner disk oscillates as it
phase mixes under the fully consistent self-potential and
external galactic potential. Both effects have little effect
on scale height. A simulation with the same initial condi-
tions but withnmax increased by a factor of two shows the
same behavior.

The LMC disk precesses under the torque from the
Galaxy. Uncorrected, this would cause the expansion
plane to drift away from the true disk plane defined by the
instantaneous mean angular momentum. To follow this,
the disk bodies are ranked by binding energy and the low-
est 2% are used to determine the disk angular momentum
vector and expansion center. To damp any numerical feed-
back, both the expansion plane and center are determined
from a 100 time step running average.

This precession is shown in Figure 4 which shows the
azimuth of the LMC disk’s angular momentum axis in the
original frame. The disk also nutates, as seen in Figure
5, because of the initial transient. The initial angle be-
tween the mean angular momentum vector perpendicular
to the disk and the Galactic center is 45◦. Although a non-
nutating system might be achieved by iterating the initial
angular momentum vector, there is little reason to assume
this is closer to the natural state, so no corrections have
been made.

At the same time, the LMC halo and disk have a mutual
self-gravitating response that causes a slowm = 1 oscil-
lation of the disk density center. The existence of such
weakly damped modes can be demonstrated analytically
using the methods described by Weinberg (1994d). Be-
cause of these modes and the fact that mass and momen-
tum loss in the Galactic tidal field is asymmetric, the po-
tential expansion is chosen to track the density center. Al-
though the force solver can handle this situation, the sec-
ular heating of disk increases. Tests without the tidal field
confirm that this effect does not dominate or obscure the
tidal heating (cf. Fig. 6).

1Time units here are based on a circular velocity ofVo = 200km/s at the Solar circle and peak rotation curve velocity in the LMC of
VLMC = 75km/s.
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FIG. 4.— Change in azimuth of the precessing disk with
time. The vertical dotted lines indicate perigalatica.

FIG. 5.— Colatitude of angular momentum axis of pre-
cessing disk with time. For comparison with Fig. 4, the
vertical dotted lines indicate perigalatica.

The disk thickness is estimated from the density dis-
tribution in a column through the LMC at a radius of
a disk scale length. The disk plane is inferred by the
same method used to orient the force expansion (see §3.2).
The line of sight inclination is chosen to be 45◦ and az-
imuthally averaged at one LMC disk scale length. The
line of sight quantities are computed by selecting trac-
ers in a pencil along the line of sight and estimating the
one-dimensional density distribution using optimal kernel
smoothing (Silverman 1986). The quantityσd denotes the
half width corresponding to the mass enclosed within one
Gaussian standard deviation. To convert to scale height
h of the equivalent isothermal slab, an explicit evaluation
determines thatσd ≈ 1.8h. With a 45◦ inclination, this
is σd ≈ 2.6h. The variance of the velocity distribution of
stars along the line of sight is denotedσ2

v .
Figure 6 showsh andσv. There are two clear trends:

1) the thickness of the disk increases; and 2) the velocity
dispersion very slowlydecreases. The slope, shown as a
straight solid line in Figure 6, is 70pc/Gyr. The evolved
n-body disk has an approximately exponential profile, as
also predicted by the semi-analytic computation. The lin-
ear increase inh with time is predicted by the underlying
resonance theory and is a natural consequence of secular
evolution.

The decrease in velocity dispersion seems counterintu-
itive at first glance but is often seen in globular cluster
evolution. In a fixed gravitational potential, the heating
would go into kinetic energy. However, the work done
on theself-gravitatingdisk decreases the depth of the po-
tential well and, by the virial theorem, also decreases the
kinetic energy. The relative velocity dispersion tends to

increase owing to the increased orbital eccentricity and
a larger projection of the velocity along the line of sight
caused by increasing orbital inclination. However this is
not enough to offset the overall decrease in kinetic energy
and the magnitude of the dispersion decreases.

In summary, the effect of the heating is significant al-
though not as dramatic as in the analytic computation that
ignores the disk’s self gravity.

Figure 7 describes the mass loss as a function of time.
Mass beyond the LMC tidal radius is assumed to be lost.
Loss of dark halo material, disk stars and total are shown
separately with the orbital pericenters indicated as verti-
cal dotted lines. Roughly 10% of the halo and 3% of
the disk is lost byT = 6Gyr. The halo material is lost
episodically, with the peak loss just past every pericenter.
The disk stars are lost at a roughly steady rate. A total
mass of 1.4× 109 M⊙ or 7% of the original mass is lost
by T = 6Gyr. The spatial distribution of the LMC disk at
this point is shown in Figure 8 in both edge-on and face-
on projection. The colors here range from blue to red,
orange, yellow and finally white as the mass density in-
creases logarithmically. The outlying stellar spheroid that
has been heated out of the disk is fairly tenuous and the
edge-on disk is thinner than it appears. Figure 9 highlights
the distribution of lost mass for both stars and halo mate-
rial. In this figure, the lowest densities are shown as white.
Recall, the relative number of points at different radii in
these plots do not trace mass; the lower binding energies
are preferentially represented as described in §3.2.2 in or-
der to better resolve the mass loss.

3.3. Location of stripped mass



8

FIG. 6.— The scale height of the density distribution,h (left-hand axis: solid, long dash, dotted) and the root variance of the velocity distribution,
σv (right-hand axis: upper dashed curve) for a line-of-sight inclined 45◦ to the LMC disk. The scale height of the LMC disk increases at arate
of 70 pc/Gyr (solid segment). The dotted and long-dashed curves show the secular evolution in absence of the Galactic tidal field for m= 0 terms
only and all terms, respectively. The velocity dispersion is nearly constant (note the small range in velocity) but decreases slowly on average after
virialization.

FIG. 7.— Mass loss as a function of time for total mass (left), LMCdisk (center), and LMC halo (right). In each panel, the left axis describes
mass in solar masses and the right describes mass fraction. The vertical dotted lines indicate perigalatica.

There have been a number of searches for stars associ-
ated with the observed gaseous Magellanic Stream (Sand-
uleak 1980, Recillas-Crus 1982, Brueck & Hawkins 1983,
Kunkel et al. 1997a, Guhathakurta & Reitzel 1998). All
but one of these studies target the HI distribution. Kunkel
et al. study carbon stars in the outskirts of the LMC.

This paper suggests that the stellar debris has a different
distribution than the gaseous stream. Tidal heating slowly
advects the orbits to both high inclination and radius be-
fore they are lost to the Galactic potential. The stripped
distribution, then, has a larger velocity dispersion than the
kinematically cold disk component and is not collimated
on the sky. This debris should not be expected to track

the stripped gas, which can dissipate and interact with the
Galactic halo gas. A simulation that investigates this same
scenario but includes gas dynamics is in preparation.

After three orbits, the LMC is surrounded by stripped
material (cf. Fig. 10). Logarithmic contours and
color coding highlight the low-density distribution. Note
the low-level plateau of material surrounding the bound
LMC. Figure 11 shows the location of the predicted
stream in Galactic coordinates with logarithmic contour
levels of projected mass density2. The stellar ejecta would
spread along a great circle across the sky if viewed from
the Galactic center. The low star count density predicted
here, a few stars per square arc minute, is probably too low

2Figures 10 and 11 were made by kernel smoothing the n-body distribution onto a rectangular grid. In the latter case, the grid is first constructed
in l and cosb and rendered using an equal-area Hammer-Aitoff mapping. Unfortunately, the distortion due to the mapped bin shape is visible
especially at the poles but the basic features are clear.



9

FIG. 8.— Edge-on (left) and face-on (right) views of the LMC diskafter about 5 Gyr. The points are color coded to indicate massdensity on a
logarithmic scale from blue to yellow. The distance top to bottom is approximately 20kpc.

FIG. 9.— Large-scale views of evolved LMC, highlighting the low-density ejected material (white). The sharp edge is caustic due to stars lost
at a previous perigalacticon. The distance top to bottom is approximately 50kpc. The radius of the well-defined disk is approximately 10kpc.
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FIG. 10.— The projected stellar density perpendicu-
lar to the orbital plane. The Cloud is near pericenter and
moving in the ŷ direction. The five contours are spaced
logarithmically and correspond to 1.5× 10−3 M⊙/pc2 to
1.5×101 M⊙/pc2. Each unit of length in the simulation is
7kpc; the points (±7,±7) are labelled. To provide a sense
of scale, the ‘O’ and ‘X’ denote the Galactic center and an
offset of 8kpc, respectively.

FIG. 11.— The projected stellar density on the sky in Aitoff projec-
tion. The five contours are spaced logarithmically and correspond to
2×101 to 2×105 solar masses per square arc minute. The simulation
is shown with the LMC close to its current position.

to have been observed in small-area fields. For example,
the limit of Guhathakurta & Reitzel (1998), based on deep
photometry centered on the MSIV gas clump, is near but
above the predicted projected stellar mass density in de-
bris stars. However, the stripped material along the LMC
orbit but still outside the LMC should be detectable by
filtering a large-area survey along the predicted great cir-
cle. Such an analysis will be straightforward with a full-
sky survey such as 2MASS. The carbon stars observed by
Kunkel et al. (1997) in the outskirts of the LMC may be
evidence for stellar debris near but outside the Cloud.

Comparing both Figures 10 and 11, it is clear that the
distribution of stripped stars on the sky are likely to have
a large spread in distance. Of particular interest is the ex-
tension in front of the LMC which may be a possible ex-
planation for the observed intervening stellar population
toward the LMC reported by Zaritsky & Lin (1997).

4. MICROLENSING

An extended LMC stellar distribution, both bound and
unbound, can enhance the microlensing optical depth
caused by self-lensing. We can calculate the optical depth
due to microlensing by using the estimated density dis-
tribution from the n-body simulation (see Appendix for
details). We use the same Galactic halo model adopted by
the MACHO collaboration for consistency (e.g. Alcock et
al. 1997):

ρH = 0.0079
R2

0 + a2

r2 + a2 M⊙/pc3, (2)

wherer is the Galactocentric radius,R0 = 8.5kpc is the
Galactocentric distance of the Sun anda ≈ 5kpc is the
core radius.

The optical depth averaged along the line-of-sight is
given by

τ =
∫

∞

0
τ (Ds)p(Ds)dDs

[
∫

∞

0
p(Ds)dDs

]−1

, (3)

where

τ (Ds) =
4πG
c2

∫ Ds

0
ρd(Dd)

Dd(Ds− Dd)
Ds

dDd (4)

is the optical depth due to sources at a distanceDs, ρd and
ρs are the lens and source densities respectively, and

p(Ds)dDs = Cρs(Ds)D
2+2β
s dDs (5)

(Kiraga & Paczýnski 1994) is the probability of finding
a source in the interval[Ds,Ds+ dDs]. We takeβ = −1,
consistent with a fit to the Bahcall-Soneira model (1980).

For these simulation-based estimates, the LMC location
is chosen at a point in its orbit that matches its present
position. Unfortunately, this does not guarantee that the
orientation of the disk in the simulation corresponds to
the one observed. Rather than perform expensive itera-
tions, the coordinates are transformed to the observed true
orientation. The line-of-sight density distribution is com-
puted using the kernel smoothing procedure described in
§3.2.3.
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FIG. 12.— Left: microlensing optical depth as a function of MACHO fraction in the Galactic halo including MACHOs in LMC halo.The
middle (upper, lower) horizontal dotted line show the observed microlensing (±1σ confidence limits) from Alcock et al. (1997). Depth computed
using the Kiraga & Pacsyńzki β parameterization withβ = −1. The four curves shows the predicted microlensing of the initial state (solid) and
three successive pericenters (short-dash, long-dash, anddash-dot, respectively). Right: shows variation of microlensing optical depth as a function
of disk inclination for the final pericenter shown at the left. The five curves show an inclination of 11.25, 22.5, 45, 67.5,and 78.25 degrees from
bottom to top (short dash dot, short dash, solid, long dash, long dash dot, respectively).

First we assume no Galactic halo MACHOs; both
source densityρs and deflector densityρd include only
the stellar LMC distribution. This gives a total optical
depth due to LMC self-lensing of 1.4× 10−7 at the end
of three LMC orbits (5.5 Gyr) in the simulation. This
falls shy of the observed value, 2.9+1.4

−0.9 × 10−7, by nearly
two standard deviations although precise comparison is
impossible since the simulation does not follow the en-
tire LMC history. Nonetheless, self-lensing including the
tidally evolved distribution is a significant contributionto
the optical depth. The best fit value isFhalo ≈ 0.21 for the
final orbit. If the Milky Way halo contains MACHOs, it is
likely that the LMC halo also contains the same fraction.
The LMC halo has one half of the total mass initially. In
this case, the best fit is obtained forFhalo ≈ 0.18. Figure
12 (left) shows the run ofτ with Fhalo for this latter case.

The increase in the contribution to microlensing optical
depth is dominated by the thickened disk rather than the
lost stars in this simulation. Although mass is being lost
continuously, the density profile near the disk is slowly
changing after the first few orbits (as in Fig. 1 and re-
flected in Fig. 12 (left) forFhalo = 0). However, this makes
the self-lensing a strong function of disk inclination as
shown in Figure 12 (right). For example, an inclination
of 67.5, 78.25 degrees would implyFhalo = 0.11,0.0, re-
spectively. This is sensitivity is one-sided; decreasing the
inclination below 45 degrees make little change in theτ
estimates.

In summary, the tidal disk heating makes a significant
contribution to self-lensing. For no MACHOs,Fhalo = 0,
the optical depth of the tidally evolved disk is three times
larger than the initial sech2 disk. This translates to a
factor of two difference in the best estimate ofFhalo (cf.
Fig 1, left) and decreases the significance of rejecting the
Fhalo = 0 hypothesis.

5. DISCUSSION

Although the physics of resonant heating and secu-
lar evolution applied here to thicken the disk and aug-
ment tidal stripping is well-understood and secure, several
sources of wiggle room remain. First, the n-body simula-
tions are technically difficult. There is no analytic method
for constructing an equilibrium in a time-dependent tidal
field so the initial model must come to a new equilibrium
to start. The new virialized equilibrium has a weak rotat-
ing m = 1 distortion that no doubt increases the heating
rate although the disk heating during this initial period
appears to be minimal. Because the simulation has been
followed for nearly 5 Gyr and therefore many dynamical
times, we took great care to estimate the rate of secular
evolution due to intrinsic fluctuations. Bothm = 1 mode
and fluctuation heating are smaller than the tidal effects.
However, the heating from global excitation by noise or
other sources can produce thickening and needs to be un-
derstood and treated with care by simulators.

A second uncertainty is the unknown initial conditions
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for the LMC. The strongest evidence for the existence of
some dark component is the weakly falling rotation curve
indicated by globular clusters and planetary nebula (e.g.
Schommer et al. 1992). This led to adopting an even mass
split between the disk and halo components. Given the
relatively short time for scale height growth why does the
LMC appear to have a well-defined disk? A much more
massive and an extended LMC halo would protect the
luminous distribution from tidal stripping. On the other
hand, such a halo is limited by self-lensing (assuming that
it contains the same MACHOs attributable to the Galactic
halo), constrained by the LMC rotation curve, would de-
crease the orbital decay time, and may be untenable given
the observed SMC kinematics. In addition, such a halo
is more readily stripped than the disk and the work done
on the disk by the readjusting gravitational potential pro-
motes heating in addition to the halo-disk coupling men-
tioned above.

Stripping is a natural consequence of the LMC–Milky
Way interaction. A definitive failure to detect a stripped
stellar component will necessitate a reevaluation of LMC
structure. A speculative possibility is that a more mas-
sive LMC recently lost equilibrium in the Milky Way
tidal field. The exposure of the disk to a significant tidal
force might be recent. In such a scenario, the SMC most
likely was a satellite of the larger primordial LMC and is
now interacting directly with its luminous gas-rich disk.
More generally, these dynamical mechanisms will affect
all Magellanic-like systems and may help constrain their
histories and determine the extent of their dark matter ha-
los.

The current interest in MACHO detections and limits
motivated some simple estimates of self-lensing by the
LMC or by tidally-stripped LMC stars. Because the LMC
orbit is fixed in the treatment here. the trail of unbound
material at the end of the simulation is probably less ex-
tended than one might expect in Nature. Nonetheless, the
self-lensing is dominated by material in the outer parts
of the LMC or recently unbound and therefore this ideal-
ization seems unlikely to be significant. The simulation
suggests an extension in front of the LMC due to material
lost at or near pericenter that may be a possible explana-
tion for the observed intervening stellar population toward
the LMC reported by Zaritsky & Lin (1997).

6. SUMMARY

The major conclusions of this paper are as follows:

1. The Milky Way is a significant evolutionary driver
of LMC structure.The time-dependent tidal forcing
by the Milky Way will heat the LMC disk, produc-
ing extended rotating spheroid component.

2. We find that the disk scale height increases at a rate
of 70pc/Gyr (cf. Fig 6). The heating has several
components. First, there is a direct resonant cou-
pling between the time dependence of tidal forcing
and the stellar orbits within the LMC disk. Sec-
ond, the body torque from the Milky Way causes
the LMC disk to precess. The interaction between
the LMC halo and its precessing disk heats the disk.
This is anewbut important mechanism for heating
the disks of satellites.

3. The stellar velocity dispersion decreases due to disk
heating. The work done against the LMC gravita-
tional potential decreases the depth of the potential
well and the new quasi-equilibrium, although more
extended, requires less velocity support. The sign
of the effect follows from the virial theorem. Al-
though a surprise to some, this effect has been well-
documented for the evolution of star clusters.

4. The mass loss rate is approximately3×108 M⊙ per
orbit or roughly 2% per orbit at the current time.
The fraction of halo loss to disk loss is roughly 3:1.

5. Because the heated, extended component is pref-
erentially lost to tidal stripping,the unbound stars
will not be distributed like the Magellanic gas
stream but in a diffuse distribution about the LMC.
This component may be a source of both microlens-
ing sources and lenses and affect MACHO esti-
mates. Overall, we estimate that the heated disk and
tidally stripped component may make a significant
contribution to gravitational microlensing.

I thank Neal Katz and Sergei Nikolaev for many use-
ful discussions and Neal Katz and Eric Linder for com-
ments on the manuscript. This work described here was
supported in part by NSF AST-9529328 and NASA/JPL
961055.
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APPENDIX

LMC PARAMETERS

The LMC tidal radius and mass

Star count maps of the outer LMC (e.g. Irwin 1991) show an extended distribution with a fairly sharp edge, typical
of a tidally truncated system. To get an independent measurement using 2MASS star counts, we selected 12 subfields
0.5◦ ×0.5◦ in size which probe the LMC halo at the projected radii of 2◦ − 5◦ from the LMC center (lII = 280.5◦,bII =

−32.9◦). The counts were fit to Gaussian and power-law spherical models,ρ ∝ e−r2/2a2
andρ ∝

(

1+ r2/a2
)−γ

, using a
maximum likelihood procedure. The simple analytic forms for these profiles make the likelihood computation feasible.
To estimate the mass of the LMC, we fit these analytic profiles by King models to estimate the tidal radius:

MLMC =
(

rt

RLMC

)3

2MMW, (A1)

whereRLMC is the distance to the LMC andMMW = 5× 1011 M⊙ is the mass of the Milky Way. This is a total mass
estimate, including both the halo and the disk mass.

This procedure will underestimate the mass for two reasons.First, simulations suggest that the observedrt is 75%–
80% of the dynamical critical point. Second, a tidally-limited object is likely to be elongated toward the Galactic center
and therefore roughly along the line of sight. For a centrally-concentrated object, the axis ratio isa/c = 1.5. The first
correction yields a factor of (10/8)3 ≈ 2. The second increases the enclosed volume by roughly 3/2 but whether or not this
should be included depends on orientation. A reasonable correction factor is then between 2 and 3 and we conservatively
choose the former. The parameters of the ‘best fit’ models area = 2.6,2.8 for the Gaussian and power-law model with
γ = 2, respectively. For both cases, the lower mass limit is 1×1010M⊙ with a best estimate of 2×1010M⊙. An in-depth
presentation of these results is in preparation.

As an independent check, we made a naive estimate of the mass of the LMC from the analysis of the halo population
using the star counts in our fields. Most of the sources observed by 2MASS are M-giants with the absolute magnitude in
K-bandK < −4m (for the distance to the LMC of 50 kpc and 2MASSKs-bandSNR= 10 flux limit of 14.3m). Assuming
that these M giants are representative of an intermediate age population with the extended distribution derived above,
we may estimate the total stellar mass using an infrared luminosity function. For this purpose, we adopt the Galactic
luminosity function in Wainscoat et al. (1992). Integrating over the luminosity function with a standard luminosity-mass
relation results in stellar mass of≈ 4×109 M⊙, which is consistent with these estimates.

Rotation curves: a consistency check
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Schommer et al. (1992) summarizes the derived rotation curve for clusters, planetary nebulae and HI including the
Meatheringham et al. results (see Schommer et al. Fig. 8). Using a luminosity function derived for an exponential
disk and typical velocity dispersion in halo with a flat rotation curve, one finds that the circular velocityVc is roughly
20–30% larger than the rotation valueVo. For a rotation curve withVo ≈ 75 km/s, one finds a mass within 10.8 kpc
of M ∼> 2×1010M⊙ which is nicely consistent with the tidal radius estimate. See Schommer et al. for more extensive
discussion of these arguments.

COMPUTATIONAL NOTES

Grid-based Boltzmann solution

The evolution of a perturbed equilibrium can be explored with a time-dependent perturbation theory (e.g. Weinberg
1994b, Murali & Weinberg 1997a). The physics behind this approach is as follows. The period of the LMC orbit is
longer than the periods of many of the stellar orbits within the cloud and such orbits are adiabatically invariant to the
time-dependent tidal forcing. However, in cases where the frequencies of the stellar orbit are commensurate with the
forcing frequencies, the resulting degeneracy breaks the adiabatic invariant. The change in the gravitational potential
causes the resonance to sweep through phase space as described in §3.1 and the direction of the passage determines the
effect of the resonance on the conserved quantities. The neteffect on the gravitational potential depends on the scale
of the inhomogeneity in the phase-space distribution. The evolution equations, therefore, take the form of a collisional
Boltzmann equation with the right hand side depending on a gradient of phase space. Numerically, we approximate the
solution of this equation by a two step process:

1. Update the phase-space distribution function in a fixed potential using the finite-difference representation for the
evolution term on the right hand side. This term can be written in flux form as described below and therefore
conserves density over one step.

2. Hold the distribution function fixed as a function of actions and solve for a new equilibrium. For ease of solution,
the potential is assumed to have spherical symmetry while the distribution itself may be generally axisymmetric
(e.g. f = f (E,L,Lz)).

Resonant heating rates

The linearized Boltzmann equation is a linear partial differential equation in seven variables. Using action-angle vari-
ables, we can separate the equation and employ standard distribution functions constructed according to Jeans’ theorem
(Binney & Tremaine 1987). The explicit form of the linearized Boltzmann equation is

∂ f1
∂t

+
∂ f1
∂w

∂H0

∂I
−

∂ f0
∂I

∂H1

∂w
= 0, (B1)

wherew is the vector of angles, andI are the conjugate actions. The quantitiesf0 andH0 depend on the actions alone.
Making the assumption that the tidal force from the Galaxy issmall, the perturbation may be separated into phase-space
and time components,H1 = η(r )g(t), expanded in a Fourier series in action-angle variables (e.g. Tremaine & Weinberg
1984). Each termf1l in the Fourier series is the solution of the following differential equation:

∂ f1l

∂t
+ (il ·Ω)f1l = il ·

∂f0

∂I
V l(I )g(t) ≡ il ·

∂f0

∂I
H1l, (B2)

whereΩ = ∂H0/∂I and

Vl(I ) =
1

(2π)3

∫ π

−π
η(r )e−il ·wd3w. (B3)

The quantityl is a vector of integers whose rank is the number of degrees of freedom; e.g. for the three dimensional
problems considered here,l = (l1, l2, l3). In practice, we usually confine our perturbation to a particular set of spherical
harmonics or cylindrical harmonics which restricts two outof three to a finite set (see Tremaine & Weinberg 1984 for
details).

The rate of change in energy or action arising from the perturbation follows from Hamilton’s equations and is

Ė =
∞
∑

l=−∞
il ·ΩH1−l f l

İ j =
∞
∑

l=−∞
iI jH1−l fl . (B4)
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For periodic perturbations, the time dependent amplitude may be represented by a Fourier series,

g(t) =
∞
∑

n=−∞
aneinωt . (B5)

With this form forg(t), equation (B2) may be solved for the perturbed distribution function by Laplace transform. Finally,
phase averaging the quantities in equations (B4 yields the following time-asymptotic rates:

〈Ė〉 = −8π4
∞
∑

l=−∞
(l ·Ω)(l ·

∂f0

∂I
)|V l|

2
∞
∑

n=−∞
|an|

2δ(nω − l ·Ω). (B6)

〈İ j〉 = −8π4
∞
∑

l=−∞
l j (l ·

∂ f0
∂I

)|Vl |
2

∞
∑

n=−∞
|an|

2δ(nω − l ·Ω). (B7)

Murali & Weinberg (1997a) show that this expansion, continued to the next order, results in an equation for the change
in distribution function in terms of these rates which takesthe form:

〈 ḟ2〉 ∝
∂

∂I
· 〈İ 〉 (B8)

which may be solved by standard flux-conserving finite-difference methods.
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