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RESEARCH OBJECTIVES

1. Beam-Plasma Discharge

Our principal research effort will go into the study of means of transferring the
greatest amount of power from a beam to its resultant plasma. Experimentally, this
will involve the redesign of System D in such a way as to permit easier variation of gun
parameters, and beam powers up to 1 MW, or so, will be used. Also, the redesign
will provide greater pumping speed and will allow the use of highly conducting end plates
just outside the mirrors to provide "magnetic line-tieing."

Other studies will continue the work on excitation of ion motion by modulating the
beam at an appropriate frequency between the ion-cyclotron and the hybrid frequency.

2. Beam-Plasma Interactions: Experiments and Theory

During the past year, we have observed beam-plasma interactions that lead to self-
excited ion oscillations in the vicinity of the ion plasma frequency p.. Our effort now

is to establish an appropriate theoretical model that will explain these observations and
ellucidate the role of hot electrons.

A velocity analysis of the emerging beam in System A has been obtained. Theoretical
work on the nonlinear aspects of beam-plasma interactions is being carried out in order
to obtain a quantitative picture of the energy loss by the beam.

Experiments have been initiated to study the nature of beam-plasma interactions
when the injected beam has a considerable fraction of its energy across the applied mag-
netic field. Low-frequency oscillations and a diocotron-type breakup of the beam have
been observed.

3.. Active Plasma Effects in Solids

We plan to continue our theoretical studies of plasma instabilities in solids that may
be of interest for high-frequency generation and amplification. An analysis of acoustic-
wave growth in the presence of electron drift along an applied magnetic field has been
completed. The analysis of quantum effects that become important at high frequencies
continues. Other modes under study are the drifted-helicon wave with its self-magnetic
field, and nonlocal effects on the helicon surface-wave mode.

L. D. Smullin, A. Bers, R. J. Briggs, R. R. Parker

This work was supported by the National Science Foundation (Grants GK-57
and GK-1165)
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1. SYSTEM C: ION-CYCLOTRON WAVE GENERATION

The study of ion-cyclotron wave excitation and propagation in System C has been

completed and the results will be submitted to the Department of Electrical Engineering,

M. I. T., as an Sc. D. thesis.

One of the results of this study is the solution of the eigenvalue problem previously

posed.1 In addition to the exact solution, we have obtained good approximate solutions

in two mutually exclusive regions of plasma parameters, one of which corresponds to

the "zero-electron mass" approximation.

R. R. Parker
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2. BEAM-PLASMA DISCHARGE: SYSTEM D

Oscillations Stimulated by a DC Beam

A DC beam has been injected into the afterglow of the beam-plasma discharge to

study the interaction of a low-energy (<1 kV) beam with a plasma that has a significant

fraction of its electron density in the form of hot electrons. We see oscillations in the

250-1000 Mc range, which cease at the times corresponding to the electron plasma fre-

quency (as determined by the previously measured density decay), dropping below the

particular frequency that is being observed. Low-frequency oscillations in the range

1-50 Mc are observed 50-150 msec after the main discharge. We are now attempting

to correlate these observations with the work of Lieberman. 1

Characteristics of the Unstable Afterglow

The DC beam described above triggers an instability when the gas pressure is below

the level of normal operation. One characteristic of this instability is a sharp drop in

the diamagnetism. Since we can interpret rapid (<5-10 msec) changes in the diamag-

netism, we can use this instability to determine the plasma diamagnetism at times in

the afterglow that are greater than the flux diffusion time through the discharge-tube

wall. The range of observed diamagnetism is shown in Fig. XXI-1, wherein we have

assumed that all of the hot electrons are lost in the instability, that is, the diamagnetism

of the plasma drops to zero.

Previously reported observations 2 of oscillations following the occurrence of an

instability have been extended. The oscillations are observed as low as 1 kMc - lower

than the electron cyclotron frequency (~3 kMc). Raising the magnetic field ~50 per cent
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Fig. XXI-1. Plasma diamagnetism determined from triggered instability.

does not eliminate the oscillations near 1 kMc.

The particle flux to the walls and ends of the system following an instability has been

observed. The net current out of the ends of the system is negative, and the net current

to the walls is positive. If this is interpreted as meaning that electrons are lost axially

and ions radially, the currents approximately account for the total number of par-

ticles in the system at the time of the instability.

Pressure Measurements

The Veeco-Gauge gauge factor has been determined with a McLeod gauge to be
3

two for hydrogen, in agreement with data furnished by Veeco. The pressure

transient for the Marshall valve is

shown in Fig. XXI-2. The upper

curve is the pressure ~2 inches in

10-4 .2" IN FRONT OF COLLECTOR front of the collector, and the lower

curve is the pressure at the gun end

• of the system. The peak pressure

GUN END was adjusted to be the same as the
OF SYSTEM

peak pressure used for previously

105 I I I I I reported measurements of the discharge

0 20 40 60 80 100 characteristics.
TIME (msec) X-ray spectrum measurements are

Fig. XXI-2. Marshall valve pressure now being made to determine the tem-

transient. perature of the hot electrons. A
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beryllium window and a thin sodium iodide scintillation crystal are being installed to

facilitate measurement of the spectrum down to 10 keV.

The author wishes to acknowledge the use of the facilities of the National Magnet

Laboratory for the experiments described above.

R. R. Bartsch
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3. CROSS-FIELD BEAM-PLASMA EXPERIMENT

Preliminary experiments have been carried out on the cross-field beam-plasma

apparatus described in a previous report. 1 In these initial observations three types of

beams have been used: (i) an axially flowing hollow beam obtained by having Br and BL'
as previously described, pointing in the same direction and equal in magnitude; (ii) an

axially flowing hollow beam rotating about its axis obtained by having BL and Br oppo-

sitely directed and equal in magnitude; and (iii) an axially flowing scalloped beam

obtained by setting BL = 0.

With any of these beams it is possible to operate the discharge in two regimes. The

first regime is characterized by ionization of the gas only in the region of the beam. The

second regime is encountered by increasing the pressure of the background gas and the

perveance of the beam. In the last regime a beam-plasma discharge takes place, and

gas in the entire drift region can be ionized.

The initial measurements have shown low-frequency, narrow-bandwidth oscillations to

be present in the low pressure-low perveance regime. These oscillations range in fre-

quency from 10to 200 kHz, and in some cases are essentially pure sine waves. Oscillations

also have been observed in the beam-plasma-discharge regime. These oscillations are of

wider bandwidth and higher in frequency (~100 mHz) than the low-frequency oscillations.

Experiments are now being carried out to verify a thin-beam electrostatic model of

the system operating in the low pressure-low perveance regime.

B. R. Kusse, A. Bers
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4. SHEET MODELS OF THE BEAM-PLASMA DISCHARGE WITH PLASMA DENSITY

GRADIENTS ALONG THE BEAM

Previously, we found we had to include a very large collision frequency (v = 0. Z p)

to justify our assumption that the plasma remained linear at the point of initial beam

overtaking.1 In this case the plasma had a uniform density, and we velocity-modulated

the beam at the plasma frequency. We find that the introduction of a longitudinal plasma

density gradient produces a much less intense interaction, even in the absence of col-

lisions or temperature. If we velocity-modulate the beam at the local plasma frequency

near the gun, this frequency will be different from the local plasma frequency at the point

of initial overtaking. That is, the bunches formed at overtaking will strike the plasma

off-resonance, and the fields there will be much less.

Linear Theory: Continuum Model

We shall now derive the linearized equations for a beam-plasma interaction with the

plasma density increasing linearly from the gun. We shall then compare computer

experiments with these linearized results.

The model is one-dimensional, with a cold, collisionless plasma whose density is

given by

2 2
S(z) = + a z. (1)
p

We assume that all variables oscillate at c, the local plasma frequency at z = 0.

imwv =eE
p

avb
b obz

im w vb + mvob az -eE (3)

E Pp + Pb
(4)

o

a [p (z) v] = -i w (5)
8z op p p

a8 z [ob Vb + Pb o] = -i o Pb' (6)

where v p pp, Vb, Pb are the first-order velocities and charge densities, and Pob is
assumed constant. By manipulation of Eqs. 1-6, we obtain

2

az 2b + aav + i 2az b +iaaz+w2 0. (7)vo az 2 0 zo az v pb ]b=az o
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The solutions to Eq. 6, for z < 0, are

Vb I - exp _o O o (0 v (8)

v bII -exp -iYz -z VablI v oh v (9)

and for z > 0,

VbI ~ exp (i 1 ()/2 (10)

( 2 o p b  
1/2

Vbi exp (iZ) K -L o (z)' (11)
blI v vexp-o 0 /

The expressions for the other variables can be obtained from Eqs. 1-6. In particular,

mWpb 2maph I
E = exp I ; z > 0 (12)
E= Vb e vo ( L v o

The physical meanings of the VbII solutions are still unclear. Attempts to excite

them in computer experiments have failed, thus far. We note that if "a" were negative

(a linearly decreasing density) the solutions for z > 0 and z < 0 would be reversed.

Nonlinear Theory: Computer Sheet Model

For "a" positive, the I solution is easily excited in a computer experiment. This
o 1

calculation was done as reported previously, except a Runge-Kutta integration technique

was used throughout, in place of the Milne method. Energy conservation is now better

than 0. 5 per cent. Snapshots of normalized beam-sheet velocity and acceleration

(-eE/m) versus distance are shown in Figs. XXI-3 and XXI-4. The solid lines in each

figure indicate the predictions of the linear theory. Times are normalized to po, dis-

tances to 0. 4v o/ po. The density is p (z) = 0. 15 p0 + 0. 001 z.

The plasma first-order charge density is approximately 11 per cent of p (z) at the

point of maximum field. With a suitable correction for finite beam diameter, it should

be even less. This matter is under study at present.

J. A. Davis
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5. SHEET MODEL OF A PLASMA SLAB

We have continued the study of nonlinear plasma slab oscillations with a charge-

sheet model., 2 The oscillations were initiated by a uniform displacement 6 of an

electron cloud that is cold in equilibrium and has thickness d. Several new aspects of

the investigation are reported here.

Dependence of the Scrambling Rate on Initial Perturbation

From electron-sheet trajectories given previously, it can be seen that for small

initial displacements the scrambling which originally occurs near the surface propagates

in toward the center of the slab at a constant rate. It has been noted that the rate of

scrambling propagation is a function of the initial displacement. For the data points

shown in Fig. XXI-5, the rate of scrambling propagation is directly proportional to the

initial displacement. The rate R s is described by

R = 1.33 f 6, (1)
s p

where f is the plasma frequency in cycles per second, and 6 is the initial displacement.

The numerical factor was determined from Fig. XXI-5. Since the scrambling propagates

0.15

-1 0.10
3

0.05
O

x

x

I I I ,

0.05

( d) (RELATIVE DISPLACEMENT OF
ELECTRON CLOUD )

Fig. XXI-5. Rate of scrambling propagation as a function of initial displacement.

in from both sides of the slab, the time, At, at which the ordered plasma oscillations in

the entire slab have been destroyed is given by

At 0.38 d

p

where T is one plasma period, T = 1/f.
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Maximum Energy in the Random Motion

The initial energy given to the slab by a uniform displacement perturbation is entirely

in the form of potential energy. If U denotes the initial energy per unit area of the slab,

we have

Uo = m(p6)2 N 1-- ,3 (2)

where N is the total number of particles per unit area, and m is the mass of an electron.

The second term inside the brackets is due to the nonuniform electric field near the

boundary. Note that for small displacements, U0  Im( 5) N.
As the scrambling propagates into the slab, the number of particles Ns that have

scrambled (those that are no longer oscillating coherently at the plasma frequency)

steadily increases. These particles initially had a total energy given by

U s  -1m( 6)2 N (3)

If the scrambled particles are assumed to have a Maxwellian velocity distribution

f(V) given by

N1 dd
f(V) = exp - V (4)

v 2 kT
where V = d and XD the total kinetic energy of these particles would beciD 2'

p mw

UTh = 2 m vf(v) dv (5)

or

1 2N (WX6
UTh =~- m Ns pD (6)

We can obtain an upper bound to the temperature or Debye length, XD, of the

scrambled particles by assuming that all of the initial energy given to the scrambled

particles appears as random kinetic energy. Using Eq. 3 and 6, we find

XD = 6. (7)

Numerical Example

The bar-graph velocity distribution for scrambled particles is shown in Fig. XXI-6

for a slab modeled by 129 electron sheets. The distribution was averaged in time over

one plasma period when t/Tp 16. The initial displacement was (6/d) = 0. 0117, so thatp
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Fig. XXI-6. Time average velocity distribution of scrambled particles

for t/T z 16, and- = 0.0117.
P

at this time (in agreement with Fig. XXI-5) approximately half of the particles have

scrambled, or N s = 65. A Maxwellian was fitted to the bar-graph and the Debye

length was determined to be

D
d = 0. 007. (8)

D
Thus - = 0. 64, and we find that approximately 40 per cent of the initial energy given

to the scrambled particles appears as energy in the random motion.

H. M. Schneider
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6. STABILITY CRITERIA FOR DISPERSION RELATIONS CONTAINING

BRANCH POINTS

The stability criteria of Bers and Briggs were developed for plasma dispersion rela-

tions, A(w, k), which are single-sheeted in the k-plane.1 The application of the criteria

to dispersion relations which have branch cuts has been studied,2 and some additional

thoughts concerning this last type of dispersion relation are presented here.

Many dispersion relations have no branch points with the k-plane and can be analyzed
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perfectly well by the original formulation of the stability criteria. It should be pointed

out that the expression for the roots, o(k), obtained from the dispersion relation A = 0,

has branch points in the k-plane, and a number of sheets corresponding to the number

of roots of w for a given k. This does not mean that the dispersion relation has branch

points. The original formulation of the stability criteria only breaks down when the dis-

persion relation itself is associated with more than one sheet in the k-plane.

One example of a dispersion relation with a branch line in the k-plane is the following

one for longitudinal plasma waves in a single-species plasma:

2 af (u)
o0

p + u
(o, k) = I ---- du. (1)

k J-6 u
lim 6 -o

This function has branch points in the k-plane at (Re Im ) (Reo -Im 0 See

Fig. XXI-7. This can be demonstrated by taking as fo a resonance function f o 2 2'
u +a

Then A(w, k) becomes

1 8
A(co, k) c ) og a tan- a

2+
+a k

k

It can be seen that this function has branch points as described above.

ki

k-plane

Fig. XXI-7. Branch cut in k-plane for A(o, k)

F describing logitudinal plasma

kreal waves, under the assumption of
real w positive and imaginary w
negative.

The Fourier contour of the stability criteria is taken along the real k-axis. In

applying the stability criteria for single-sheeted dispersion relations, one investigates

the roots k = k(w) as w is swept from the lower half w-plane to the real W-axis. Absolute

instabilities occur when k-roots pinch the deformed Fourier contour during these sweeps.
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It will be shown that this same condition applies to dispersion relations with branch points
in the k-plane, Care must be taken however, to make sure that the Fourier contour is
really pinched.

The dispersion relation A(w, k) in Eq. 1 can be approximated by Al ( , k) and A2(w, k),
where

2 8f
S00

Al ( , k ) = 1 -- du; Im- < 0
k 2 - u --

k

2 af
co o

A2( , k) = 1 - u du; Im > 0.
k U-o u

k

This approximation is good, except near the origin of the k-plane, around the branch
points, and becomes better as 6 - c. The regions of validity are shown in Fig. XXI-8,
with the Fourier contour on only one sheet.

_ 1 (w,k)
k- plane

F one
ksheet

Fig. XXI-8. A and A2 approximations to A(o, k).

S 2 (W,k) other
kreaIl sheet

Now consider the roots k = k(wo) A obtained from A1 for sweeps of o. If they behave

as shown in Fig. XXI-9, they most definitely pinch the deformed Fourier contour and
predict an absolute instability. If, however, they collide as shown in Fig. XXI-10,
more care must be taken to determine whether or not the deformed Fourier
contour is really pinched.

In order to see these poles collide, analytic continuation must be performed
and the branch lines deformed. In doing this it can be seen the Fourier con-
tour is pushed up and the collision does not pinch the contour. Consequently,
no absolute instability is predicted.
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k1
k-plane

Fig. XXI-9. Absolute instability roots of Al(w,k).

k- plane

F
kr

..4l+>*

Fig. XXI-10. Roots of Al(, k) that do not pertain to an absolute instability.

By extending these arguments, it can be seen that a collision of k-roots obtained

from Al(w, k) leads to an absolute instability if one root crosses the positive real k-axis,

but does not lead to an absolute instability if the collision occurs as a result of a

crossing of the negative real k-axis. Similarly, a collision of k-roots obtained from

A2(w, k) leads to an absolute instability only if one root crosses the negative real k-axis.

B. R. Kusse
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7. FINITE LARMOR RADIUS EFFECTS IN THE INTERACTION OF ELECTRONS

WITH HIGH-FREQUENCY ACOUSTIC WAVES

We have previously reported on an analysis of the classical dispersion relation for

electrons interacting with acoustic waves in a solid.

A physical picture of the interaction and, in particular, the effects of a finite Larmor

radius, which come into the electron dielectric constant through the Bessel functions, can

be obtained by considering the particle motion along the wave. The energy exchanged

between any given particle and the electric field of the wave is given by E • v. As we

are considering a longitudinal acoustic wave, E is along q, the wave vector. Thus it is

sufficient to consider the zero-order trajectory of a particle along a coordinate axis in

the q direction as a function of time given by

w sin O
x = x + (w cos O)t - cos (wct+),q o I c c

where x 0 and c are the arbitrary initial position and phase, w11 is the velocity along the

external magnetic field, Bo, wL is the velocity across the magnetic field, oc is the

electron-cyclotron frequency, and 0 is the angle between the wave vector and B o . If we

consider a longitudinal wave of the form

q
E=Eo- cos (qx-wt),

then the force on the electron is

F = -eE- cos qx + (qI w -)t cos ( t+)

where q = q cos 0, and q = q sin 0. The results of computations on this equation for

a particular value of initial position and phase are shown in Fig. XXI-11. Figure XXI-1 la

is just the electron velocity along q attributable to the Larmor orbit; Fig. XXI-llb and

11c are the force on a particle for parameters such that the resonance at c- q will c = 0

is satisfied. The first is for a value of p - (which is 2Tr times the ratio of the elec-
c

tron Larmor radius to the wavelength) near the first maximum of J 1, and the second for

a value of p near the first zero. Figure XXI-11d and lie are similar, except that here

the resonance is w - q w + 3  = 0 and the p values refer to the first maximum and

zero of J3. It is easily seen that the value of E • v averaged over a cyclotron period

is much larger for p values near the maximum of the Bessel functions, and

decreases rapidly for values of p near a zero of the Bessel functions.

No conclusions can be drawn about the direction of energy flow between the particles
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dx

(a)

t p= 1. 8 5

(b)

nt p = 3 . 80

(c)

Fig. XXI-11. (a) Unperturbed velocity of a particle along the wave, owing to
its Larmor orbit. (b) Force on the particle caused by the wave
for parameters such that w - q 1 w11 + wc = 0 and p is near the

first maximum of J 1. (c) Same as (b), except that p is near

first zero of J 1 . (d) and (e) Same as (b) and (c), except that

the parameters are such that ( - q wl + 3w c = 0.

and the wave on the basis of this picture. The reason for this is that if the total energy

exchange averaged over the randomly distributed initial position and phase is considered,

it is easily seen that <F ' v> = 0. The direction of energy flow depends, of course,
x P

on the derivatives of the distribution function in the manner previously discussed.

S. R. J. Brueck
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B. Applied Plasma Physics Related to Controlled Nuclear Fusion

Academic and Research Staff

Prof. D. J. Rose Prof. L. M. Lidsky Prof. S. Yip
Prof. T. H. Dupree Prof. E. P. Gyftopoulos Dr. K. Chung
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R. A. Hill A. Watanabe

RESEARCH OBJECTIVES

1. Material and Engineering Experiments Related to Controlled Fusion

We have continued studies of material damage by 14-MeV neutrons, which will be a
serious problem in any controlled nuclear fusion reactor. Irradiation of small metal

samples continues, with the use of the weak (1010 neutrons/sec) Texas Instrument
Company accelerator that is available. A radiation damage-detection technique that
enables observation of the small expected damage has been used. The measured dam-
age will be compared with theoretical estimates.

We hope to continue experiments on the neutron and gamma-ray spectra from mock-
up fusion blanket assemblies.

D. J. Rose, G. R. Odette

2. Feasibility Studies of Controlled Fusion

Calculations of hypothetical controlled fusion system parameters will be carried out
to determine the improvement expected by modifying the moderator to contain pure liq-
uid metal, and by modifying other material specifications.

D. J. Rose, L. M. Lidsky

3. Intense Neutron Sources

Preliminary calculations indicate that it may be possible to build a 14-MeV neutron

source with 1015 n/cm2 sec intensity at the target position by using the Mach cone of a
freely expanding jet as a windowless gas target. A detailed investigation of such neu-
tron sources has been started with the primary objective of solving the hydrodynamic
equations for duct flow with intense heating. This will be followed by an analysis of the
system to find the optimal pressure ratios, expansion factors, diffusor design, and so
forth.

L. M. Lidsky, D. G. Colombant

This work was supported by the National Science Foundation (Grant GK-1165).
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4. Experimental Plasma Turbulence

Work continues on the long "quiescent" plasma column developed during the last two
years. To be studied now are (a) ion temperature, including comparison with various
theoretical estimates; (b) determination of onset conditions for various unstable modes
prevalent in such columns; (c) determination of the conditions for most nearly quies-
cent operation; (d) propagation of weak (linear) perturbing waves in the quiescent plasma;
(e) measurement of the correlation function of the fluctuations in the plasma under var-
ious operating conditions; (f) a comparison of conditions in the plasma during "quiescent"
operation with predictions of quasi-linear theory.

We have listed more research work than can be accomplished in one year; there are

many projects waiting for this popular and useful device.

K. Chung, L. M. Lidsky, D. J. Rose

5. Confinement of Hot-Electron Plasmas

We have generated beam-plasma discharge plasmas in mirror, cusp, and stuffed-
cusp magnetic fields and are engaged in measurements of their similarities and differ-
ences. The mirror-contained plasma is distinguished from the cusp-contained plasma,
for example, by a much higher temperature for the energetic group (35 kev vs ~10 kev)
and a higher level of density fluctuation. We plan to identify the types of instabilities
present in these several systems, giving special attention to distinguishing the instabil-
ities driven by the high- and low-energy electron groups.

L. M. Lidsky, C. E. Wagner

6. Particle Diffusion in Weakly Turbulent Plasma

We have studied the motion of particles in weakly turbulent plasma. Particular
emphasis has been given to the conditions under which the distribution function satisfies
a diffusion equation. Explicit expressions for the diffusion coefficient have been derived.
The growth (or damping) rates of the turbulent wave spectrum can be calculated from
the rate of energy and momentum transfer between particles and waves.

W. M. Manheimer, T. H. Dupree

7. Particle Motion in Large Amplitude Waves

We are attempting to calculate the time evolution of the distribution function for a
single nonlinear wave. It is hoped that the solution of this problem can then be applied
to strong narrow-band turbulence. In this regime particle trapping, or strong reflec-
tions from potential maxima, is an important feature of the motion. This feature is not
included in present weak-turbulence theory.

T. S. Brown, T. H. Dupree

8. Computer Experiments on Turbulent Plasma

A computer program has been written to compute the particle distribution
function for a given arbitrary spectral density of the electric field. The influ-
ence of the spectrum on particle motion can be studied in detail and compared
with various theories. The distribution function and the electric field are not
required to satisfy Maxwell's equation. Dropping this "self-consistency" constraint
leads to a much more accurate computer simulation of the Vlasov equation, and also
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gives the experimenter complete freedom to specify the spectrum.

R. W. Flynn, T. H. Dupree

1. OSCILLATIONS IN THE HOLLOW-CATHODE DISCHARGE ARC

We report here the observation of plasma oscillations in the highly ionized Argon

plasma produced by the hollow-cathode discharge arc (HCD).1 Oscillations were detected

by Langmuir probes at various values of plasma parameters. As expected, we observed

a close relation between the oscillations and the plasma stability.,

In our HCD,1 we can vary the confining magnetic field in the drift-tube region, the

magnetic field over the source region, the neutral pressure in the drift-tube region, the

gas-feed rate through the hollow cathode, the gas-feed rate through the hollow anode, the

current flow to the anode plate and the column length of the drift tube. Although varying

each parameter may affect others, we can vary them rather freely in some restricted

regions. In this observation we set the column length at its maximum, and the cathode

feed rate at 1 atm-cc/sec, unless it is otherwise noted. We used 1/8" I.D., 0.015"

thick, tantalum tube for the cathode, and the inner radius of each baffle was 1 5/8". The

probes were located in the drift tube near the baffle and also near the axial mid-point.

The radial positions of the probes were changed, and the probes were either floated or

biased to the ion saturation voltages. Typically, the plasma density was around 1013/cc

and the radius of the arc column was 1/2".

At fixed gas-feed rate and drift-tube magnetic field, we found significant changes in

the frequencies and magnitudes of the oscillations as we varied the source magnetic

field. In Fig. XXI-12 we show a series of oscilloscope pictures of power spectra and

time-resolved responses of the oscillations. The probes were located 1/4" from the

axis and floating. At lower source magnetic fields (a, b or e), there are distinctive sig-

nals at 75 kc and its multiples. In fact, we observed similar oscillations at other drift

field values. The interesting point is that the fundamental frequency is almost at the

ion-cyclotron frequency, which is 75 kc for this particular case. Harmonics are very

strong for these oscillations. We also noticed that this oscillation disappears abruptly

as we increase the source magnetic field over a certain value. If we compare

Fig. XXI-12d and 12e, we see that the disappearance of this oscillation is very sudden,

and the plasma column itself undergoes sudden changes in its density and brightness.

Note the doubling of the neutral pressure despite the very small change in the source

magnetic field. Also, the current to the anode plate changes a lot, although we do not

change the gas-feed rate or the external load resistance. Notice in Fig. XXI-12b that

when we increased the neutral pressure by an additional anode gas feed, we found that

the harmonics were very much subdued, and the oscillation could be relatively reduced

somewhat, as compared with the density changes of the plasma.
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As we increased the source magnet far beyond the critical value, we found a new

kind of oscillation at lower frequencies (Fig. XXI-12c). Contrary to the other kind of

oscillations, these new oscillations are very strong at the edge of the plasma, and we

could detect a sizable signal far from the axis. In the series of pictures in Fig. XXI-13,

(b) (c)
Y = 1/4" =5/8 "

(a)
y = 0

I =d

Is =

P3 =

I p =

100 A

50 A

1.4 x 10- 4 mm Hg

7A

(d) (e)

-= " = 3/ 8 "

Id = 85 A

Is =117 A

P,= 4.3 x 10-4 mm Hg

Fig. XXI-13.

(f)

y = 1/8"

Radial profile of the oscillations.

we display the signals from different radial positions. We note smaller signals near

the center (Fig XXI-13e vs 13f) in the case of lower frequency oscillations. Previously

reported "quiet" plasma,2 which was produced by the same HCD machine, could be
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obtained by controlling the magnetic fields to somewhere near the critical values

at which the sudden change of plasma density and the onset of plasma oscilla-

tion occurred. In order to obtain the "quiet" plasma, we must reduce the low-

frequency type of oscillation by lowering the source magnetic field to its critical

20 -

(%) 10 -

0 1 I I I I II
120 160 200 240 280 320 360

3xI
source

Fig. XXI-14. Percentage of fluctuations with respect to the plasma density.

Cathode Feed zI atm-cc/sec
Id = 125 A==-B d 2. 5 kGauss

Anode Feed = 0. 1 atm cc/sec
1

y = in. (near the edge of the plasma).

value and introducing a small amount of the anode gas feed. In Fig. XXI-14

we see the percentage density fluctuation with respect to the source magnetic

field. The minimum value of the fluctuation percentage in this particular set

of parameters is rather high (8%). If we had measured at the center of the

plasma column, we would have recorded a much lower value. This is due to

higher plasma densities and lower fluctuation level at the center. Incidentally,

the fluctuation illustrated by Fig. XXI-14 was measured by the probes biased

at ion-saturation voltages.

The probes biased to ion-saturation voltages registered similar responses

with the probes floated. Thus we speculate that the oscillations are electro-

static. Using several probes located at different positions axially and azimuth-

ally, we studied the propagation of the oscillation. We found that the higher

frequency oscillations associated with the ion-cyclotron frequency propagate from

the anode to the cathode with the phase velocity very close to the ion acoustic

wave phase velocity. On the contrary, the lower frequency oscillation, which

appeared at higher source magnetic fields, was detected as moving from the

source region to the anode. We speculate that this oscillation may be due to

the relative motion of layers of the plasma in the baffle region and thus has

a hydrodynamic origin. An independent study of the effects of the baffles is

under way.
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To summarize, we observed two types of plasma oscillations in the Argon plasma

produced by the HCD and established the close relation between the plasma oscillations

and the plasma stability, which is very helpful in obtaining the "quiet" plasma.

K. Chung
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C. Plasma Magnetohydrodynamic Flows, Waves, and Instabilities

Academic and Research Staff

Prof. W. P. Allis Prof. H. A. Haus

Graduate Students

C. A. McNary K. R. Edwards

RESEARCH OBJECTIVES

1. In an MHD plasma, small disturbances of density and temperature are accom-
panied by small changes in constituent properties, such as conductivity and Hall param-
eter. An analytic description of all waves that can be supported by a moderate magnetic
Reynolds number MHD plasma for all directions of propagation is under study, including
the effects of parameter variations on magnetoacoustic and Alfven wave propagation. A
delineation of the MHD environments for which absolute and convective instabilities, if
any, can occur is to be found. A study of oscillator and/or amplifier device application
feasibility will be undertaken.

H. A. Haus

2. It is well known that glow discharges often exhibit bright spots, and the bright
"meniscus" which develops in a hot-cathode discharge has been studied experimentally
by Emeleus. Its origin is due to the interaction of the beam of fast electrons from the
cathode with the inhomogeneous plasma in this neighborhood. The phenomena of plasma
wave amplification and Landau damping are involved. An exact mathematical theory for
this and similar phenomena is being developed.

W. P. Allis

1. ELECTRON BEAM INTERACTION WITH A SPATIALLY INHOMOGENEOUS

TEMPERATE PLASMA

This theoretical analysis of an electron beam-plasma interaction is an attempt to

model some of the experimentally observed phenomena that are typical of such a sys-

tem. Various experimental investigators have observed the randomization of the beam

energy and direction, and the abrupt commencement of plasma oscillations at a point

a small distance from where the beam enters the plasma.

In the theoretical model now under study, the beam and plasma are considered as

separate entities, coupled electrostatically by Poisson's equation. The plasma is

assumed to be collisionless and temperate, and the beam is sufficiently diffuse that it

does not significantly perturb the plasma as a result of collisions. The geometry of

the beam-plasma system consists of a z-directed electron beam having the same

*This work was supported principally by the National Science Foundation (Grant
GK-1165).
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cross-section dimensions as the plasma. The beam is assumed to be spatially homo-

geneous and to have a directed velocity, v , which is a constant. The plasma has a one-

dimensional density distribution, Gk(z), and is spacially homogeneous in the other two

directions. Under these initial assumptions, the plasma and the beam may be modeled

by the collisionless Vlasov equation. This equation is written separately for each species:

plasma ions, plasma electrons, and beam electrons. The distribution functions involved

are split into zero- and first-order parts, and zero-order parts are assumed to be inde-

pendent of time and separable in the remaining space and velocity variables. The first-

order portions are assumed to be periodic in time; and, because of the comparatively

large mass and inertia of the plasma ions, first-order perturbations of the ions are

neglected. Substitution of these distribution functions in the Vlasov equation and linear-

ization yields first-order equations for the plasma and beam electrons of the form

8 6f - e . 6
+ v- V6f- e "  6f - E G(z) f = 0. (1)

t m v m v

In Eq. 1, P and 6E are the zero- and first-order electric fields respectively, f&v)G(z)

is the separable zero-order distribution function, and 6f is the first-order distribution

function. If we assume that the electric fields are z-directed and functions of z only,

Eq. 1 may be simplified to

af (v )a8f a 86f e 6a f e afv
+ v E(z) 5E(z) Ge() v - 0. (la)8t z 8z m 8v mze(la

z z

With the following definitions, Eq. la may be put into the form

F a favaa + HI 6f=- = r fz (2)

z i z

where the time dependence is assumed to be of the form exp(-jwt); eE/m E a;

e6E(z) G(z) r F(z); H is the operator 1 (jo-vxD); and D Note that only when
m a x z

as a(z), but is a constant, can this formalism be carried out; otherwise commutativity

difficulties arise. An additional operator U is so difined that [a/av z+H]U = 0, with

U(v =0) = 1 and UU = U-1 U = 1. Straightforward integration then yields

Sz z(3)U = U(vz=O) exp a zV - =exp a (jwvz - D) (3)

Then the particular solution for 5f may be written in the form

v -1 = (

6f = U dv' U Q + Uf(vz =0), (4)

where
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r(z) f -1 1 z
Q- and U = exp- jv z - D.a Byav a z 2

The formal solution indicated in Eq. 4 may be verified by direct substitution.1

Although Eq. 4 is only the particular solution of Eq. la, it should be noted that the homo-

geneous solution if of no interest in this analysis. Carrying out the operations indicated

in Eq. 4 for a distribution function of the form

-3/2 1 u -
(

fk(v) = (lvk) exp - u [z+ (vz k) j (5)
k

2 2 2where u = vx +vy vk is the thermal velocity, and vo, k is the directed velocity of the

k specie, yields the following result for 5f:

D  [jw+BD/2A] 0(-)n (Zn) !

ffk k(v, vL) 1 +  + (6)fkv k 2Aa 2Aa(v +B/2A) n n![2 (v+B/2A)]2n a (6)

z n=1 z

The infinite series of Eq. 6 results from an asympototic expansion of an error function

that arises from the finite limits of integration of the exponential of Eq. 5. Also, A =

/v 2 + D/2a, and B=- j/a+2vo k/vk . Equation 6 is an infinite-order differential

equation, and is formally the solution for 6fk '
Integration of Eq. 6 over velocity space yields a formal result for the first-order

particle number density, 8nk, or the first-order charge density 6 pk = -e 6 nk:

2Zn-1 n-1
C n + (- )n(2n)! (a + 2

n=1 vn)!k k 0DF KKIvoDj eIoDJ),(7)

2 (oD-j )

kcc a+ --- D

. 1 + Fm, n m eF(Z), (7)

m=l k

(V D-j )

where C = 1 3 5 •. . .. (Zn-1), and

[1.3 • ... . (Zm-1)][(Zn+1)(2n+2) ... (2n+2m)1
F m, n (m)!

In the case of current interest, two species k are considered, plasma electrons and
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beam electrons. By identifying the plasma electrons with the subscript k = e and the

beam electrons with k = b; substitution of Eq. 7 in Poisson's equation, with vo e = 0

for the plasma electrons, yields

6 Pk 2 7
D6E - o -P

n= 1

C a + eD) (1)n

Z en aD2 (
2n

+ (2n)! (2a
n! 2

Se

a 2 in-1

a + Ve D

2n
Co

1+

oo

SFm, n
m=l

F 2n-1

C a + $D)
n  2 -

v_ (V D-J)2 n

1+

v 2

\ 2/

(-I)n (2n)!
+

n!

bZa

b)

F
m, n

ge(z) 6E(z)

(a + n - lD

(v D-j ) 2

- .E(z).

2 2 2Nee
In Eq. 8, G (z) = Ng(z), and Gb() = Nb. Also, o = Ne /mE , and Ob

Nbe /me Eo. Equation 8 is the formal differential equation for 5E(z).

Possible solutions of Eq. 8 have been considered for the case in which a = 0, the

zero-order velocity distribution function of the beam is a delta function, 6(v -v ), and
3 Z

only first-order terms in the plasma temperature, T e = - e, are retained. Then Eq. 8

may be simplidied to

_D N Dl
D6E(z) = -p 4 ge(z) 6E(z) + -N2 .

w e (v oD-j )
2OE.

(8a)

For a cold plasma T e is small and the first term in square bracketts may be neglected.

Then, one integration of (8a) yields
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2

- ge(z) D E -
C o

+ b 2g2")() -

v O2 O :

2 2
p v p

- g(Z) + j 2 ge(ZZ Z

2jW

- ge(z)
o

2
- ge(z)

v
O

6E = K 1 ,

where K1 is the integration constant.

For a linear plasma density variation, the coefficient of the second derivative term

is of the form

1- a2 (z)= 1-alz,

in which it is assumed that

2 P
a (z) = g2 e(z)

2 2
a (z) = alz

a2(z=O) = 0

2 2a (z=1) = a1'

Then Eq. 8 may be put in the form of the general Bessel

tion

differential equa-

x 2 D 5E + x[Z+ZEx] D E +

1
where x 2- z,

al

jC

and E = .
v o

2 2
bo

2
al

x + 2Ex + Ex 2 5E = K 1 ,

The homogeneous solution of Eq. 9 is

-1/ -j x 2wb 1/21
6E(x) = x-1/2 exp 1(CJ 1 - x

or in terms of z,

+2 b 1/2+ C Y - x2 1 av
1 o
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-1/2 exp v iz1/a 1  1av2 1

i-a 2z o l

2 1/
+ C Y1 12-_ 1 )

a I v 0 f

Note that Eq. 10 is singular for a (z)

0p (z) equals the excitation frequency,

growth indicated for a plasma density

= 1, the point where the local plasma frequency

w. Figure XXI-15 illustrates the typical wave
2

distribution of the form a lz.

oZ

2
Fig. XXI-15. Typical growth of the first-order electric field; wb p, al = 1.

The author wishes to acknowledge frequent and invaluable discussions with

Professor W. P. Allis which have aided in the development of this analysis to its

present state.

C. A. McNary
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