59 research outputs found

    Perturbative corrections to the Gutzwiller mean-field solution of the Mott-Hubbard model

    Get PDF
    We study the Mott-insulator transition of bosonic atoms in optical lattices. Using perturbation theory, we analyze the deviations from the mean-field Gutzwiller ansatz, which become appreciable for intermediate values of the ratio between hopping amplitude and interaction energy. We discuss corrections to number fluctuations, order parameter, and compressibility. In particular, we improve the description of the short-range correlations in the one-particle density matrix. These corrections are important for experimentally observed expansion patterns, both for bulk lattices and in a confining trap potential.Comment: 10 pages, 10 figue

    Foveated Encoding for Large High-Resolution Displays

    Get PDF
    Collaborative exploration of scientific data sets across large high-resolution displays requires both high visual detail as well as low-latency transfer of image data (oftentimes inducing the need to trade one for the other). In this work, we present a system that dynamically adapts the encoding quality in such systems in a way that reduces the required bandwidth without impacting the details perceived by one or more observers. Humans perceive sharp, colourful details, in the small foveal region around the centre of the field of view, while information in the periphery is perceived blurred and colourless. We account for this by tracking the gaze of observers, and respectively adapting the quality parameter of each macroblock used by the H.264 encoder, considering the so-called visual acuity fall-off. This allows to substantially reduce the required bandwidth with barely noticeable changes in visual quality, which is crucial for collaborative analysis across display walls at different locations. We demonstrate the reduced overall required bandwidth and the high quality inside the foveated regions using particle rendering and parallel coordinates

    Leaf-associated macroinvertebrate assemblage and leaf litter breakdown in headwater streams depend on local riparian vegetation

    Full text link
    Headwater streams harbor diverse macroinvertebrate communities and are hotspots for leaf litter breakdown. The process of leaf litter breakdown mediated by macroinvertebrates forms an important link between terrestrial and aquatic ecosystems. Yet, how the vegetation type in the local riparian zone influences leaf-associated macroinvertebrate assemblages and leaf litter breakdown rates is still not resolved. We investigated how leaf-associated macroinvertebrate assemblages and leaf litter fragmentation rates differ between forested and non-forested sites using experimental leaf litter bags in sixteen sites paired across eight headwater streams in Switzerland. Our results show that sensitive taxa of the invertebrate orders Ephemeroptera, Plecoptera and Trichoptera (EPT) and the functional group of shredders were strongly associated with forested sites with overall higher values of abundance, diversity, and biomass of EPTs in forested compared to non-forested sites. However, the importance of riparian vegetation differed between study regions, especially for shredders. Fragmentation rates, which are primarily the result of macroinvertebrate shredding, were on average three times higher in forested compared to non-forested sites. Our results demonstrate that not only the composition of the aquatic fauna but also the functioning of an essential ecosystem process depend on the vegetation type in the local riparian zone

    Effects of dephasing on shot-noise in an electronic Mach-Zehnder interferometer

    Full text link
    We present a theoretical study of the influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer. In contrast to phenomenological approaches, we employ a microscopic model where dephasing is induced by the fluctuations of a classical potential. This enables us to treat the influence of the environment's fluctuation spectrum on the shot noise. We compare against the results obtained from a simple classical model of incoherent transport, as well as those derived from the phenomenological dephasing terminal approach, arguing that the latter runs into a problem when applied to shot noise calculations for interferometer geometries. From our model, we find two different limiting regimes: If the fluctuations are slow as compared to the time-scales set by voltage and temperature, the usual partition noise expression T(1-T) is averaged over the fluctuating phase difference. For the case of ``fast'' fluctuations, it is replaced by a more complicated expression involving an average over transmission amplitudes. The full current noise also contains other contributions, and we provide a general formula, as well as explicit expressions and plots for specific examples.Comment: 18 pages, 8 figures. A brief version is contained in cond-mat/030650

    Separation quality of a geometric ratchet

    Full text link
    We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are calculated by a Monte-Carlo simulation and by a master-equation approach, using the correponding microscopic quantities and the shape of the obstacles as input. We define a measure of separation quality and investigate its dependence on the applied force and the shape of the obstacles

    Non-Markoffian effects of a simple nonlinear bath

    Full text link
    We analyze a model of a nonlinear bath consisting of a single two-level system coupled to a linear bath (a classical noise force in the limit considered here). This allows us to study the effects of a nonlinear, non-Markoffian bath in a particularly simple situation. We analyze the effects of this bath onto the dynamics of a spin by calculating the decay of the equilibrium correlator of the spin's z-component. The exact results are compared with those obtained using three commonly used approximations: a Markoffian master equation for the spin dynamics, a weak-coupling approximation, and the substitution of a linear bath for the original nonlinear bath.Comment: 7 pages, 6 figure

    Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer

    Full text link
    We present a general analysis of shot noise in an electronic Mach-Zehnder interferometer, of the type investigated experimentally [Yang Ji et al., Nature 422, 415 (2003)], under the influence of dephasing produced by fluctuations of a classical field. We show how the usual partition noise expression T(1-T) is modified by dephasing, depending on the power spectrum of the environmental fluctuations.Comment: 5 pages, 3 figure

    CD47 restricts antiviral function of alveolar macrophages during influenza virus infection

    Get PDF
    CD47 is an ubiquitously expressed surface molecule with significant impact on immune responses. However, its role for antiviral immunity is not fully understood. Here, we revealed that the expression of CD47 on immune cells seemed to disturb the antiviral immune response as CD47-deficient mice (CD47−/−) showed an augmented clearance of influenza A virus (IAV). Specifically, we have shown that enhanced viral clearance is mediated by alveolar macrophages (aMФ). Although aMФ displayed upregulation of CD47 expression during IAV infection in wildtype mice, depletion of aMФ in CD47−/− mice during IAV infection reversed the augmented viral clearance. We have also demonstrated that CD47 restricts hemoglobin (HB) expression in aMФ after IAV and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, with HB showing antiviral properties by enhancing the IFN-β response. Our study showed a negative role for CD47 during antiviral immune responses in the lung by confining HB expression in aMФ

    Aharonov-Bohm ring with fluctuating flux

    Full text link
    We consider a non-interacting system of electrons on a clean one-channel Aharonov-Bohm ring which is threaded by a fluctuating magnetic flux. The flux derives from a Caldeira-Leggett bath of harmonic oscillators. We address the influence of the bath on the following properties: one- and two-particle Green's functions, dephasing, persistent current and visibility of the Aharonov-Bohm effect in cotunneling transport through the ring. For the bath spectra considered here (including Nyquist noise of an external coil), we find no dephasing in the linear transport regime at zero temperature. PACS numbers: 73.23.-b, 73.23.Hk, 73.23.Ra, 03.65.YzComment: 17 pages, 8 figures. To be published in PRB. New version contains minor corrections and additional discussion suggested by referee. A simple introduction to the basics of dephasing can be found at http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm
    • …
    corecore