

 University of Groningen

Foveated Encoding for Large High-Resolution Displays
Friess, Florian; Braun, Matthias; Bruder, Valentin; Frey, Steffen; Ertl, Thomas

Published in:
IEEE Transactions on Visualization and Computer Graphics

DOI:
10.1109/tvcg.2020.3030445

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Friess, F., Braun, M., Bruder, V., Frey, S., & Ertl, T. (2021). Foveated Encoding for Large High-Resolution
Displays. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1850-1859.
https://doi.org/10.1109/tvcg.2020.3030445

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1109/tvcg.2020.3030445
https://research.rug.nl/en/publications/8b75409a-63ac-416f-b6e5-5d111b6f6a59
https://doi.org/10.1109/tvcg.2020.3030445

1850 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

1077-2626 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Manuscript received 30 Apr. 2020; revised 31 July 2020; accepted 14 Aug. 2020.
Date of publication 14 Oct. 2020; date of current version 15 Jan. 2021.
Digital Object Identifier no. 10.1109/TVCG.2020.3030445

Foveated Encoding for Large High-Resolution Displays

Florian Frieß, Matthias Braun, Valentin Bruder, Steffen Frey, Guido Reina, and Thomas Ertl

Abstract— Collaborative exploration of scientific data sets across large high-resolution displays requires both high visual detail as well
as low-latency transfer of image data (oftentimes inducing the need to trade one for the other). In this work, we present a system that
dynamically adapts the encoding quality in such systems in a way that reduces the required bandwidth without impacting the details
perceived by one or more observers. Humans perceive sharp, colourful details, in the small foveal region around the centre of the field
of view, while information in the periphery is perceived blurred and colourless. We account for this by tracking the gaze of observers,
and respectively adapting the quality parameter of each macroblock used by the H.264 encoder, considering the so-called visual acuity
fall-off. This allows to substantially reduce the required bandwidth with barely noticeable changes in visual quality, which is crucial for
collaborative analysis across display walls at different locations. We demonstrate the reduced overall required bandwidth and the high
quality inside the foveated regions using particle rendering and parallel coordinates.

Index Terms—Large high-resolution displays, Fovetaed Encoding, Remote Visualisation

1 INTRODUCTION

Streaming and conferencing technologies for working remotely are
becoming increasingly important. Many of the widely adopted solu-
tions support resolutions of 4k, but have to make compromises with
respect to video quality under heavy load. Aiming primarily at desk-
top or mobile device usage, they do not offer support for large tiled
high-resolution displays and image resolutions beyond 4k. While there
are specialized solutions that support sharing the output of these types
of systems based on hardware-accelerated video encoding, these also
make compromises between quality and bandwidth. They either deliver
a high quality image and therefore induce bandwidth requirements
that cannot generally be met, or they uniformly decrease the quality to
maintain adequate frame rates. However, in visualisation in particular,
details are crucial in areas that are currently under investigation. In con-
trast, lower quality is sufficient in other areas that are mostly required
for context. With techniques that uniformly adjust quality, some of the
limited bandwidth is wasted on image areas outside of the user’s region
of interest.

To address this, we adapt the concept behind foveated rendering to
dynamically adjust compression settings for streaming. This means that
we track the gaze of users to locally adapt the quality of the encoding,
in order to improve the image quality in the region of interest while
keeping the overall required bandwidth as low as possible. This is
achieved by lowering the encoding quality in the periphery, which is
barely noticeable due to characteristics of the human visual system. A
challenge in this context is that large high-resolution display setups are
oftentimes unique research prototypes, which means that any technique
designed to share content between such systems needs to be able to
deal with different systems. For instance, there are systems that use
as many GPUs as possible in a single machine so that applications
can run just like on a desktop computer, while others rely on a GPU
cluster in order to visualise large and complex scientific data sets, such
as particle data or 3D flow fields. Although their individual hardware
setup, and in addition the software that runs on them, might be different,

• Florian Frieß is with University of Stuttgart. E-mail:
florian.friess@visus.uni-stuttgart.de.

• Matthias Braun is with University of Stuttgart. E-mail:
matthias.braun@visus.uni-stuttgart.de.

• Valentin Bruder is with University of Stuttgart. E-mail:
valentin.bruder@visus.uni-stuttgart.de.

• Steffen Frey is with University of Groningen. E-mail: s.d.frey@rug.nl.
• Guido Reina is with University of Stuttgart. E-mail:
guido.reina@visus.uni-stuttgart.de.

• Thomas Ertl is with University of Stuttgart. E-mail:
thomas.ertl@vis.uni-stuttgart.de.

these systems still share one property: they have a large frame buffer
that is potentially distributed. With the recent wide availability of fast,
low-latency hardware video encoders and decoders, we choose to use a
combination of such hardware and frame buffer streaming as the basis
of our solution for interactively sharing visualisations between such
systems. These hardware video encoder and decoder chips represent an
ideal solution since they are available on almost all newer GPUs and
use a separate pipeline, thus not interfering with other GPU tasks, like
rendering and computation. This allows sharing the content of these
displays in real time, but considering the trade-off between quality and
bandwidth is still required.

Combining the hardware encoders with the foveated encoding we
created an approach that provides multiple users with a large high-
resolution image shared from another large display, preserving high
quality locally, while the rest of the image is compressed heavily in
order to reduce the required bandwidth. Our approach makes high qua-
lity screen capture sessions between two large high-resolution displays
possible over commonly available Ethernet connections, e. g. 100 to
400 Mb/s. Every captured frame, on each of the display nodes that
render a part of the (distributed) frame buffer, is optionally converted,
rotated and downscaled or divided to fit the colour format and maxi-
mum size used by the hardware encoder. By tracking the gaze of the
observers on the client side, we determine foveated regions around
their centre of vision. Every time new foveated regions are received by
the server, all encoding macroblocks are checked for intersection with
those regions. For blocks inside a region, the distance to the centre of
the region is computed. Based on this distance, the quality parameter of
the macroblock is changed, so that close to the centre of the region the
quality is better. Following the visual acuity fall-off model, the quality
decreases towards the border of the foveated region until it reaches
the lowest value, which is also used for all macroblocks outside of the
regions. The encoded frames are forwarded to the clients that decode
and display them.

In the following, Sect. 2 first gives an overview of related work.
Next, Sect. 3 covers the model for the visual acuity fall-off we used
to compute the foveated regions. Sect. 4 describes our method con-
ceptually, followed by a detailed description of the implementation
in Sect. 5. Finally, Sect. 6 presents and discusses the results of latency
and throughput tests.

The major contributions of this work are our approach for foveated
encoding with hardware encoders supporting multiple users, and our
implementation of foveated encoding for large high-resolution displays.

2 RELATED WORK

There are several approaches and systems for remote visualisation that
have been proposed in recent years [7, 31]. Although SAGE [29] and
SAGE 2 [28] by Renambot et al. mainly focus on collaboration they
also offer remote visualisation capabilities. SAGE uses pixel streaming

but it requires code changes to applications in order to generate the
streams. SAGE 2 employs a browser-centric application allowing
it to run a large variety of systems and therefore moved away from
pixel streaming. There are also systems that have been developed
specifically with the use case of interactive high-resolution streaming
of visualisation content in mind. Biedert et al. [1] developed a streaming
solution using hardware video compression on the GPU to achieve high
frame rates. They use one GPU to encode each part of the tiled display
and synchronise the resulting video streams on the server and client
side to ensure a smooth playback. While the system offers a high frame
rate, it does not allow to change the settings of the encoder on-the-
fly, meaning that it provides a constant image quality and bandwidth
requirements. Marrinan et al. [19] showed a system that did not use any
compression but is still able to stream high-resolution content in real-
time. They make use of multiple TCP socket servers, launching a single
TCP server for each node that renders a part of the final image, allowing
parallel processing of rendering and transmitting a frame to one or more
clients. Each client, i. e. the nodes at the display side, will connect to
one (or more) servers and will receive partial frames, which have to be
redistributed to match the layout of the tiled display. Their system is
able to reach high frame rates, however it requires a connection with
an enormous bandwidth to do so, which is not commonly available.

A large amount of work addressing bandwidth limitations has been
done so far. Levoy [18] and Bolin and Meyer [2] proposed adaptive
sampling techniques, while Koller et al. [16] and Herzog et al. [14] used
image compression techniques. Pajak et al. [26] use augmented video
information to efficiently compress and stream images of dynamic 3D
models. Moreland et al. [22] present an approach using level-of-detail
techniques providing an interactive rendering regardless of the network
performance. A technique presented by Frey et al. [11] is targeted
towards scientific visualisation in a remote setup. They integrate sam-
pling and compression techniques to balance visualisation and transfer
to optimise image quality. Frieß et al. [12] follow a similar approach
and try to get the best possible image quality for a limited bandwidth.
They split the image into smaller tiles and use a convolutional neural
network to predict the quality and size of the image for different enco-
der settings. Based on the predictions and an optimizer they assign each
tile a different encoding setting to preserve the quality in regions with
fine structures while reducing the image quality in more homogeneous
areas. While this approach also reduces the required bandwidth, it
is unaware of the current user focus and therefore potentially spends
significant bandwidth on regions that nobody is currently looking at it.

Foveated video compression, achieved by changing the implemen-
tation of the video encoder, has been explored previously. Lee and
Bovik [30] improved the efficiency of video processing by constructing
several foveated video processing algorithms: foveation filtering (local
bandwidth reduction), motion estimation, motion compensation, video
rate control, and video postprocessing. Their approach led to a better
computational efficiency by using a protocol between the encoder and
the decoder. Chen and Guillemot [5] adapted the macroblock quan-
tization adjustment in the H.264/advanced video coding by using a
foveated model. This model enhances the spatial and temporal just-
noticeable-distortion models in order to account for the relationship
between visibility and eccentricity. For each macroblock the quanti-
zation parameter is optimized based on this model. Illahi et al. [15]
adapted the video encoder of a cloud-gaming application so that it
changes the quality of the encoding based on the gaze direction of the
player. They adjust the quality parameter of each macroblock based
on the current gaze position, increasing the quality in macroblocks the
player looks at and decreasing the quality in the remaining ones. Zare
et al. [35] proposed to use tiled based encoding in order to transmit
wide-angle and high-resolution spherical panoramic video content to
head-mounted displays. They store the video content in two different
resolutions, divided into multiple tiles using the High Efficiency Video
Coding (HEVC) standard. Based on the user’s current viewport tiles
are selected. For these tiles the highest captured resolution is transmit-
ted while the remaining tiles are transmitted from the low-resolution
version. In contrast to these techniques, our system is not restricted to a
single machine but is able to deal with different hardware set-ups used

to build large high-resolution displays.
A variety of parallel rendering frameworks and middlewares have

been suggested to display content on large high-resolution displays.
The Cross Platform Cluster Graphics Library (CGLX) [8, 27] is an
OpenGL-based framework for distributed high-performance visualisa-
tions. It allows adapting existing or developing new OpenGL-based
applications for tiled displays. It also supports co-located collaboration
through multiple multi-touch devices to which the updated scene infor-
mation is streamed. Eilemann et al. [9] developed Equalizer, a parallel
OpenGL-based middleware that supports scalable display environments.
It provides a large set of features to support a wide variety of research
and industry applications. OmegaLib [10] is based on Equalizer. It pro-
vides tools to develop immersive 2D and 3D applications for systems
ranging from large display walls to CAVEs. Additionally it supports
dynamic reconfiguration of the display environment to interactively
allocate 2D and 3D workspaces.

3 VISUAL ACUITY FALL-OFF

The ability of a person to recognize and distinguish small details is
usually referred to as visual acuity. There is a large body of work that
attributes the human eye a fall-off in visual acuity towards the periphery.
This means humans typically cannot make out many details and colours
outside a small foveal region around the fixation point. In contrast, near
this point at the centre of the field of view, humans perceive the highest
number of details and a broad range of colours. Strasburger et al. [33]
give an overview on different works on peripheral vision and pattern
recognition. This property has been exploited in numerous works in
computer graphics and visualisation that implement foveated rendering
methods [4, 13, 32, 34].

The visual acuity fall-off can be modelled as a hyperbolic function.
This model matches the density distribution of photoreceptors in the
human macula and has been validated with low level vision tasks [3,33].
By using a cubic function, we approximate the fall-off function to
determine a quality factor q, based on the distance d to the centre of
vision:

q = (1−d)3, with d ∈ [0,1]. (1)

We apply this function in a foveal region that we determine conservati-
vely by assuming a 50° field-of-view. The average human macula size
(the region in the retina containing fovea, parafovea, and perifovea) is
typically below 20°. We encode with the lowest quality outside this
region. Due to the discrete nature of the quality parameter QP, used by
the H.264 video codec, that we apply for encoding inside the foveal
region, we approximate Equation 1 with a piecewise linear function to
determine the quality parameter at a specific position:

QP = QPmin − round(q · (QPmin −QPmax)). (2)

In this work, we use QPmin = 51 and QPmax = 11, resulting in 41
different quality parameters. This produces a smooth approximation
of the visual acuity fall-off function, and results in barely perceptible
visual impact in the periphery.

4 METHOD

In this section, we describe the full pipeline of our method on both sides
of the screen sharing session (cf. Fig. 1). The server side renders and
captures the visualisation, and then carries out foveated encoding of
the captured frames. For this we change the quality of the macroblocks,
used by the H.264 video codec, based on their distance to the foveated
regions. The client side provides the respective foveated regions, based
on tracking the users, and displays the decoded frames.

The server side uses the following steps to produce the foveated
encoding. This is computed in parallel on all nodes that render a part of
the (potentially distributed) frame buffer. Firstly the last rendered frame
is acquired as a texture. Since the encoder expects a different colour
format we use a compute shader to perform the necessary conversion.
This shader also handles the optional rotation, in 90° steps, in addition
to the, also optional, downscaling or dividing into separate tiles of the
texture in order to fulfil the resolution requirements of the encoder. It
outputs either the converted, rotated and downscaled texture or multiple

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

FRIEß ET AL.: FOVEATED ENCODING FOR LARGE HIGH-RESOLUTION DISPLAYS 1851

Foveated Encoding for Large High-Resolution Displays

Florian Frieß, Matthias Braun, Valentin Bruder, Steffen Frey, Guido Reina, and Thomas Ertl

Abstract— Collaborative exploration of scientific data sets across large high-resolution displays requires both high visual detail as well
as low-latency transfer of image data (oftentimes inducing the need to trade one for the other). In this work, we present a system that
dynamically adapts the encoding quality in such systems in a way that reduces the required bandwidth without impacting the details
perceived by one or more observers. Humans perceive sharp, colourful details, in the small foveal region around the centre of the field
of view, while information in the periphery is perceived blurred and colourless. We account for this by tracking the gaze of observers,
and respectively adapting the quality parameter of each macroblock used by the H.264 encoder, considering the so-called visual acuity
fall-off. This allows to substantially reduce the required bandwidth with barely noticeable changes in visual quality, which is crucial for
collaborative analysis across display walls at different locations. We demonstrate the reduced overall required bandwidth and the high
quality inside the foveated regions using particle rendering and parallel coordinates.

Index Terms—Large high-resolution displays, Fovetaed Encoding, Remote Visualisation

1 INTRODUCTION

Streaming and conferencing technologies for working remotely are
becoming increasingly important. Many of the widely adopted solu-
tions support resolutions of 4k, but have to make compromises with
respect to video quality under heavy load. Aiming primarily at desk-
top or mobile device usage, they do not offer support for large tiled
high-resolution displays and image resolutions beyond 4k. While there
are specialized solutions that support sharing the output of these types
of systems based on hardware-accelerated video encoding, these also
make compromises between quality and bandwidth. They either deliver
a high quality image and therefore induce bandwidth requirements
that cannot generally be met, or they uniformly decrease the quality to
maintain adequate frame rates. However, in visualisation in particular,
details are crucial in areas that are currently under investigation. In con-
trast, lower quality is sufficient in other areas that are mostly required
for context. With techniques that uniformly adjust quality, some of the
limited bandwidth is wasted on image areas outside of the user’s region
of interest.

To address this, we adapt the concept behind foveated rendering to
dynamically adjust compression settings for streaming. This means that
we track the gaze of users to locally adapt the quality of the encoding,
in order to improve the image quality in the region of interest while
keeping the overall required bandwidth as low as possible. This is
achieved by lowering the encoding quality in the periphery, which is
barely noticeable due to characteristics of the human visual system. A
challenge in this context is that large high-resolution display setups are
oftentimes unique research prototypes, which means that any technique
designed to share content between such systems needs to be able to
deal with different systems. For instance, there are systems that use
as many GPUs as possible in a single machine so that applications
can run just like on a desktop computer, while others rely on a GPU
cluster in order to visualise large and complex scientific data sets, such
as particle data or 3D flow fields. Although their individual hardware
setup, and in addition the software that runs on them, might be different,

• Florian Frieß is with University of Stuttgart. E-mail:
florian.friess@visus.uni-stuttgart.de.

• Matthias Braun is with University of Stuttgart. E-mail:
matthias.braun@visus.uni-stuttgart.de.

• Valentin Bruder is with University of Stuttgart. E-mail:
valentin.bruder@visus.uni-stuttgart.de.

• Steffen Frey is with University of Groningen. E-mail: s.d.frey@rug.nl.
• Guido Reina is with University of Stuttgart. E-mail:
guido.reina@visus.uni-stuttgart.de.

• Thomas Ertl is with University of Stuttgart. E-mail:
thomas.ertl@vis.uni-stuttgart.de.

these systems still share one property: they have a large frame buffer
that is potentially distributed. With the recent wide availability of fast,
low-latency hardware video encoders and decoders, we choose to use a
combination of such hardware and frame buffer streaming as the basis
of our solution for interactively sharing visualisations between such
systems. These hardware video encoder and decoder chips represent an
ideal solution since they are available on almost all newer GPUs and
use a separate pipeline, thus not interfering with other GPU tasks, like
rendering and computation. This allows sharing the content of these
displays in real time, but considering the trade-off between quality and
bandwidth is still required.

Combining the hardware encoders with the foveated encoding we
created an approach that provides multiple users with a large high-
resolution image shared from another large display, preserving high
quality locally, while the rest of the image is compressed heavily in
order to reduce the required bandwidth. Our approach makes high qua-
lity screen capture sessions between two large high-resolution displays
possible over commonly available Ethernet connections, e. g. 100 to
400 Mb/s. Every captured frame, on each of the display nodes that
render a part of the (distributed) frame buffer, is optionally converted,
rotated and downscaled or divided to fit the colour format and maxi-
mum size used by the hardware encoder. By tracking the gaze of the
observers on the client side, we determine foveated regions around
their centre of vision. Every time new foveated regions are received by
the server, all encoding macroblocks are checked for intersection with
those regions. For blocks inside a region, the distance to the centre of
the region is computed. Based on this distance, the quality parameter of
the macroblock is changed, so that close to the centre of the region the
quality is better. Following the visual acuity fall-off model, the quality
decreases towards the border of the foveated region until it reaches
the lowest value, which is also used for all macroblocks outside of the
regions. The encoded frames are forwarded to the clients that decode
and display them.

In the following, Sect. 2 first gives an overview of related work.
Next, Sect. 3 covers the model for the visual acuity fall-off we used
to compute the foveated regions. Sect. 4 describes our method con-
ceptually, followed by a detailed description of the implementation
in Sect. 5. Finally, Sect. 6 presents and discusses the results of latency
and throughput tests.

The major contributions of this work are our approach for foveated
encoding with hardware encoders supporting multiple users, and our
implementation of foveated encoding for large high-resolution displays.

2 RELATED WORK

There are several approaches and systems for remote visualisation that
have been proposed in recent years [7, 31]. Although SAGE [29] and
SAGE 2 [28] by Renambot et al. mainly focus on collaboration they
also offer remote visualisation capabilities. SAGE uses pixel streaming

but it requires code changes to applications in order to generate the
streams. SAGE 2 employs a browser-centric application allowing
it to run a large variety of systems and therefore moved away from
pixel streaming. There are also systems that have been developed
specifically with the use case of interactive high-resolution streaming
of visualisation content in mind. Biedert et al. [1] developed a streaming
solution using hardware video compression on the GPU to achieve high
frame rates. They use one GPU to encode each part of the tiled display
and synchronise the resulting video streams on the server and client
side to ensure a smooth playback. While the system offers a high frame
rate, it does not allow to change the settings of the encoder on-the-
fly, meaning that it provides a constant image quality and bandwidth
requirements. Marrinan et al. [19] showed a system that did not use any
compression but is still able to stream high-resolution content in real-
time. They make use of multiple TCP socket servers, launching a single
TCP server for each node that renders a part of the final image, allowing
parallel processing of rendering and transmitting a frame to one or more
clients. Each client, i. e. the nodes at the display side, will connect to
one (or more) servers and will receive partial frames, which have to be
redistributed to match the layout of the tiled display. Their system is
able to reach high frame rates, however it requires a connection with
an enormous bandwidth to do so, which is not commonly available.

A large amount of work addressing bandwidth limitations has been
done so far. Levoy [18] and Bolin and Meyer [2] proposed adaptive
sampling techniques, while Koller et al. [16] and Herzog et al. [14] used
image compression techniques. Pajak et al. [26] use augmented video
information to efficiently compress and stream images of dynamic 3D
models. Moreland et al. [22] present an approach using level-of-detail
techniques providing an interactive rendering regardless of the network
performance. A technique presented by Frey et al. [11] is targeted
towards scientific visualisation in a remote setup. They integrate sam-
pling and compression techniques to balance visualisation and transfer
to optimise image quality. Frieß et al. [12] follow a similar approach
and try to get the best possible image quality for a limited bandwidth.
They split the image into smaller tiles and use a convolutional neural
network to predict the quality and size of the image for different enco-
der settings. Based on the predictions and an optimizer they assign each
tile a different encoding setting to preserve the quality in regions with
fine structures while reducing the image quality in more homogeneous
areas. While this approach also reduces the required bandwidth, it
is unaware of the current user focus and therefore potentially spends
significant bandwidth on regions that nobody is currently looking at it.

Foveated video compression, achieved by changing the implemen-
tation of the video encoder, has been explored previously. Lee and
Bovik [30] improved the efficiency of video processing by constructing
several foveated video processing algorithms: foveation filtering (local
bandwidth reduction), motion estimation, motion compensation, video
rate control, and video postprocessing. Their approach led to a better
computational efficiency by using a protocol between the encoder and
the decoder. Chen and Guillemot [5] adapted the macroblock quan-
tization adjustment in the H.264/advanced video coding by using a
foveated model. This model enhances the spatial and temporal just-
noticeable-distortion models in order to account for the relationship
between visibility and eccentricity. For each macroblock the quanti-
zation parameter is optimized based on this model. Illahi et al. [15]
adapted the video encoder of a cloud-gaming application so that it
changes the quality of the encoding based on the gaze direction of the
player. They adjust the quality parameter of each macroblock based
on the current gaze position, increasing the quality in macroblocks the
player looks at and decreasing the quality in the remaining ones. Zare
et al. [35] proposed to use tiled based encoding in order to transmit
wide-angle and high-resolution spherical panoramic video content to
head-mounted displays. They store the video content in two different
resolutions, divided into multiple tiles using the High Efficiency Video
Coding (HEVC) standard. Based on the user’s current viewport tiles
are selected. For these tiles the highest captured resolution is transmit-
ted while the remaining tiles are transmitted from the low-resolution
version. In contrast to these techniques, our system is not restricted to a
single machine but is able to deal with different hardware set-ups used

to build large high-resolution displays.
A variety of parallel rendering frameworks and middlewares have

been suggested to display content on large high-resolution displays.
The Cross Platform Cluster Graphics Library (CGLX) [8, 27] is an
OpenGL-based framework for distributed high-performance visualisa-
tions. It allows adapting existing or developing new OpenGL-based
applications for tiled displays. It also supports co-located collaboration
through multiple multi-touch devices to which the updated scene infor-
mation is streamed. Eilemann et al. [9] developed Equalizer, a parallel
OpenGL-based middleware that supports scalable display environments.
It provides a large set of features to support a wide variety of research
and industry applications. OmegaLib [10] is based on Equalizer. It pro-
vides tools to develop immersive 2D and 3D applications for systems
ranging from large display walls to CAVEs. Additionally it supports
dynamic reconfiguration of the display environment to interactively
allocate 2D and 3D workspaces.

3 VISUAL ACUITY FALL-OFF

The ability of a person to recognize and distinguish small details is
usually referred to as visual acuity. There is a large body of work that
attributes the human eye a fall-off in visual acuity towards the periphery.
This means humans typically cannot make out many details and colours
outside a small foveal region around the fixation point. In contrast, near
this point at the centre of the field of view, humans perceive the highest
number of details and a broad range of colours. Strasburger et al. [33]
give an overview on different works on peripheral vision and pattern
recognition. This property has been exploited in numerous works in
computer graphics and visualisation that implement foveated rendering
methods [4, 13, 32, 34].

The visual acuity fall-off can be modelled as a hyperbolic function.
This model matches the density distribution of photoreceptors in the
human macula and has been validated with low level vision tasks [3,33].
By using a cubic function, we approximate the fall-off function to
determine a quality factor q, based on the distance d to the centre of
vision:

q = (1−d)3, with d ∈ [0,1]. (1)

We apply this function in a foveal region that we determine conservati-
vely by assuming a 50° field-of-view. The average human macula size
(the region in the retina containing fovea, parafovea, and perifovea) is
typically below 20°. We encode with the lowest quality outside this
region. Due to the discrete nature of the quality parameter QP, used by
the H.264 video codec, that we apply for encoding inside the foveal
region, we approximate Equation 1 with a piecewise linear function to
determine the quality parameter at a specific position:

QP = QPmin − round(q · (QPmin −QPmax)). (2)

In this work, we use QPmin = 51 and QPmax = 11, resulting in 41
different quality parameters. This produces a smooth approximation
of the visual acuity fall-off function, and results in barely perceptible
visual impact in the periphery.

4 METHOD

In this section, we describe the full pipeline of our method on both sides
of the screen sharing session (cf. Fig. 1). The server side renders and
captures the visualisation, and then carries out foveated encoding of
the captured frames. For this we change the quality of the macroblocks,
used by the H.264 video codec, based on their distance to the foveated
regions. The client side provides the respective foveated regions, based
on tracking the users, and displays the decoded frames.

The server side uses the following steps to produce the foveated
encoding. This is computed in parallel on all nodes that render a part of
the (potentially distributed) frame buffer. Firstly the last rendered frame
is acquired as a texture. Since the encoder expects a different colour
format we use a compute shader to perform the necessary conversion.
This shader also handles the optional rotation, in 90° steps, in addition
to the, also optional, downscaling or dividing into separate tiles of the
texture in order to fulfil the resolution requirements of the encoder. It
outputs either the converted, rotated and downscaled texture or multiple

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

1852 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Convert
(Tile)

(Rotate)
(Scale)

Encode

Encode

Transmit

Transmit

Tiled Display

or or

Fig. 1: Overview of the major parts of the pipeline from capturing a frame on the server side to sending it to the client side. Each captured frame
is converted, and optionally rotated, downscaled or divided to fit the resolution requirements of the encoder. Based on the received foveated
regions the constant quality parameter for each macroblock of the encoder is adapted and the frame or the tiles are encoded. The client side
decodes and displays the received frames or tiles.

converted and rotated tiles. Initially all macroblocks are considered to
be in the peripheral region. In the next step, the intersection between
the last received foveated regions and the macroblocks is computed. If
there is an intersection, the new quality parameter for the respective
macroblock is computed based on the distance to the centre of the re-
gion. Since we want to reduce the required bandwidth, all macroblocks
outside the regions always use the lowest possible quality parameter le-
ading to the average colour inside the macroblock. All encoded frames,
or tiles, are sliced to fit UDP packages and forwarded to the client.

The client side uses the following steps to display the incoming
encoded streams, which are again performed on all nodes, that render
a part of the (potentially distributed) frame buffer, in parallel. All
received UDP packages are reordered based on the timestamp and the,
monotonically increasing, sequence number of the package. Then the
(potentially sliced) frames are re-assembled and queued for decoding as
well as display once they are complete. Incomplete frames are dropped
after a user specified time has passed (we use 50 ms). Additionally a
single node on the client side computes the foveated regions by tracking
the users and forwards these regions to the server side.

The following paragraphs provide additional details for the different
steps of our method.

Tracking data We need to track users to acquire the foveated
regions for the encoding. We offer two approaches to do that: the
first approach uses a tracking system to track multiple users, while the
second approach uses the mouse to compute the foveated region. Both
deliver rectangles, representing the foveated region, with 120 Hz to a
single node on the client side. These rectangles are determined based on
the current position with respect to the display and the view direction of
the user in case of the tracking system or on the screen-space position
and a user defined width and height in case of the mouse. We use the
average acuity values described in Sect. 3, so the (configurable) size of
the rectangle spans 50° horizontally and 50° vertically from the user’s
position. The mouse based tracking was originally implemented for
debugging but can also be used as an alternative in case a tracking
system is not available.

Encoding and Decoding Encoding of the full frame, or the tiles,
is done by dedicated hardware encoders that are separated from other
workloads (compute or graphics), so they are not affected by any other
load on the GPU and work asynchronously. This makes encoding a
fire-and-forget operation: the submitting thread does not need to wait
for the encoding to finish, allowing to capture high frame rates. Once
the frame is encoded it is downloaded into main memory, sliced to
fit UDP packets and sent to the consumer. We use a constant quality
parameter and the maximum bitrate of the encoder is not limited, i. e.
the encoding will always reach the desired quality, and we insert a key
frame in regular intervals. This quality parameter can be set to integral
values between 51 and 1, with 51 resulting in the lowest quality and 1

yielding the best quality – basically turning off compression. In order
to adapt the quality we use a map that contains an offset for the quality
parameter of each macroblock. This allows us to change the quality
parameter in the interval [11,51] for each macroblock individually.
According to our experiments, going lower than 11 does not yield
any visible difference and only increases the required bandwidth. We
scale the quality parameter for macroblocks inside the foveated region
between 11 (close to the centre) and 51 (at the border). Decoding, same
as encoding, is performed asynchronously on the dedicated hardware
units on the GPU. Each decoded frame is copied into the display queue
where it remains until it is displayed. In case the frame is divided
instead of downscaled we use a separate encoder and decoder for each
tile.

Network We support two classes of network technologies: side-
local communication between nodes driving a single tiled display (as
well as arbitrary other nodes that can provide frames) and internet
communication between sides. For communication between sides we
use our own UDP-based protocol in order to achieve the best possi-
ble saturation of the network and to avoid latency introduced by TCP.
On-side communication is implemented using the Message Passing
Interface (MPI), which is the de-facto standard for communication in
HPC clusters. MPI has the advantage of providing specialised imple-
mentations for high-speed network technologies like InfiniBand (IB)
that talk almost directly to the hardware, while it also can be used with
standard Ethernet connections.

Display We render the decoded and assembled frames directly, the-
refore all scaling and positioning transformations are performed on the
fly on the GPU. In order to ensure that the displayed frame is consistent,
even if it is displayed across multiple nodes, we provide two different
approaches: The first one uses an MPI barrier that synchronises all
nodes just before the buffer swap of the next frame. This is a portable
solution, but it does not guarantee that the buffer swap is happening
at exactly the same time and it is a comparably expensive operation.
The second one is based on NVIDIA’s Quadro Sync technology [24],
which requires additional hardware support to use it. Quadro Sync uses
a proprietary protocol in the graphics driver and a separate Ethernet
network to ensure that all displays swap buffers at the same time. This
makes it the preferred way to synchronise the output over multiple
display nodes as it does not interfere with MPI or any other component
of the software.

5 IMPLEMENTATION

Architecture and implementation of our system are designed such that
the system can run in different kinds of tiled display environments,
while utilising any hardware support available. To achieve this, we use
a declarative approach via XML, which allows to configure each node
in the system in the same file. The nodes are identified by pertinent

Reordering Video decoder
NVDEC

Display

Tiles
(NV12)

Encoded Video
(H.264)

Internal connections
(MPI)

Encoded Video
(H.264)

MPI cluster
communicator

Point-to-point
communication

Tracking data Relay

Foveated
Regions

Point-to-point
communication

Point-to-point
connections

(UDP)

MPI cluster
communicator

MPI cluster
communicator

Relay

MPI cluster
communicator

Internal connections
(MPI)

Video encoder
NVENCScreen capturing

Reordering

Encoded Video
(H.264)

Foveated
Regions

Foveated
Regions

Tiles
(ARGB)

Fig. 2: Overview of the full system. On the left is the server side and on the right the client side, separated by the dotted line. Depicted are the
display nodes of the large displays and the streaming nodes, which transmit the data between the sides. For each node we show the components
(see Sect. 5) of the system and data flow between them. Teal-coloured connections represent raw images, while purple connections represent
encoded images. The tracking data, i. e. the look-at rectangles, are represented by orange connections. Black-coloured connections represent any
of the above, i. e. data-agnostic communication links.

strings like the host name, an IP address or one of the MAC addresses
of the computer. The settings for encoder and decoder can also be
configured in the same file, as well as the number of tiles per node, in
case foveated encoding is used.

Our system is written in C++ and relies on Direct3D 11, the Desktop
Duplication API [20], the Video Codec SDK (version 8.2.15) from
NVIDIA [25] and NVIDIA’s NVAPI. The Video Codec SDK contains
NVENC that is used to encode video streams on the GPU and NVDEC
for decoding them, again on the GPU. NVAPI allows to address the
proprietary framelock feature of Quadro GPUs, Quadro Sync. Our
aim was to be as efficient as possible in our implementation to be
able to process all data in real time. On the CPU we use zero-copy
implementations whenever possible and we try to avoid memory al-
locations by using pools of frequently used objects. Additionally we
avoid moving data between the CPU and GPU and reduce the number
of GPU-to-GPU copies. In the following, we describe the integration
and interplay of these components in the full system (cf. Fig. 2). Below,
where applicable, we first describe the normal use and then the changes
we made for the foveated encoding.

5.1 Tracking data

In order to acquire the foveated regions for the encoding we can track
the viewing direction of multiple users. For this, we use devices equip-
ped with reflective markers. Each device, referred to as rigid body,
has a unique pattern of reflectors that is used as an identifier in the
system. We use a system that consists of two Prime 13 cameras and
22 S250e cameras from NaturalPoint OptiTrack and use their software
Motive to stream the current position and orientation of each rigid body
to any machine on the same network via UDP. It is vital to calibrate
the initial orientation of a rigid-body in reference to the display, this
enables computing a correct look-at rectangle for the foveated regions.
Therefore, we determine the position of the bottom left corner of the
display in the tracking coordinate system. In addition to the position
we also set the height and width of the display, which determine the up
vector and right vector of the display. To calibrate a rigid body, it needs
to be placed inside the tracked area, pointing towards the display. The
orientation of the rigid body, as seen by the tracking system, is saved
automatically, so each rigid body only needs to be calibrated once.

Next, we describe how to compute the look-at rectangles for a single
rigid body. For this, we first need to determine the intersection of
the view direction with the display plane. A 2D illustration of the
setup with two rigid bodies, including the relevant variables used in the
calculation, is depicted in Fig. 3.

Intersection In order to compute the intersection point �s on the
display plane, we first determine the observer’s viewing direction �d.

�d = Q̃rb ·Q−1
rb ·

(
0

−�nd

)
(3)

Here, we use the quaternion Q̃rb that represents the current orientation
of the rigid body, the inverse quaternion Q−1

rb of its calibrated neutral
orientation and the normal vector�nd ∈ R3. The normal of the display
plane�nd points towards the tracking area in front of the display wall.
Using the First Intercept Theorem, we then compute the distance δ
between the position of the rigid-body and the intersection point on the
display:

δ =
�nd · (�prb −�od)

�nd · (−�̂d)
. (4)

Here, �̂d is the normalised vector �d,�od ∈R3 is the physical origin of the
display, for which we use the bottom left corner, and �prb ∈ R3 is the
current position of the rigid body. Using the distance δ , we compute
the intersection point�s:

�s = (�prb +δ · �̂d)−�od ∈ R3. (5)

In order to deal with different resolutions at the two locations, we
convert the intersection point into relative screen-space coordinates:

�̂s(x,y) ∈ R2 : x =

(
�̂rd ·�s

)

w
,y =

(
�̂ud ·�s

)

h
,

with x,y ∈ [0,1] .

(6)

Here, h and w denote the height and width of the display, �̂ud the nor-
malised vector in the up-direction of the display and �̂rd the normalised
vector in the right-direction. The latter two are determined during the
calibration step.

Foveated region Our foveated region is a rectangle that is spanned
by four vectors�ci, i ∈ {1,2,3,4}, starting from the position of the rigid
body. Therefore, we compute the intersections with the display as
described in the previous paragraph. We use the horizontal angle α
and vertical angle β in order to compute the perspective projection.
First, the current up vector �u and right vector�r of the rigid body are
computed, based on the up- and right-vectors of the display as specified

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

FRIEß ET AL.: FOVEATED ENCODING FOR LARGE HIGH-RESOLUTION DISPLAYS 1853

Convert
(Tile)

(Rotate)
(Scale)

Encode

Encode

Transmit

Transmit

Tiled Display

or or

Fig. 1: Overview of the major parts of the pipeline from capturing a frame on the server side to sending it to the client side. Each captured frame
is converted, and optionally rotated, downscaled or divided to fit the resolution requirements of the encoder. Based on the received foveated
regions the constant quality parameter for each macroblock of the encoder is adapted and the frame or the tiles are encoded. The client side
decodes and displays the received frames or tiles.

converted and rotated tiles. Initially all macroblocks are considered to
be in the peripheral region. In the next step, the intersection between
the last received foveated regions and the macroblocks is computed. If
there is an intersection, the new quality parameter for the respective
macroblock is computed based on the distance to the centre of the re-
gion. Since we want to reduce the required bandwidth, all macroblocks
outside the regions always use the lowest possible quality parameter le-
ading to the average colour inside the macroblock. All encoded frames,
or tiles, are sliced to fit UDP packages and forwarded to the client.

The client side uses the following steps to display the incoming
encoded streams, which are again performed on all nodes, that render
a part of the (potentially distributed) frame buffer, in parallel. All
received UDP packages are reordered based on the timestamp and the,
monotonically increasing, sequence number of the package. Then the
(potentially sliced) frames are re-assembled and queued for decoding as
well as display once they are complete. Incomplete frames are dropped
after a user specified time has passed (we use 50 ms). Additionally a
single node on the client side computes the foveated regions by tracking
the users and forwards these regions to the server side.

The following paragraphs provide additional details for the different
steps of our method.

Tracking data We need to track users to acquire the foveated
regions for the encoding. We offer two approaches to do that: the
first approach uses a tracking system to track multiple users, while the
second approach uses the mouse to compute the foveated region. Both
deliver rectangles, representing the foveated region, with 120 Hz to a
single node on the client side. These rectangles are determined based on
the current position with respect to the display and the view direction of
the user in case of the tracking system or on the screen-space position
and a user defined width and height in case of the mouse. We use the
average acuity values described in Sect. 3, so the (configurable) size of
the rectangle spans 50° horizontally and 50° vertically from the user’s
position. The mouse based tracking was originally implemented for
debugging but can also be used as an alternative in case a tracking
system is not available.

Encoding and Decoding Encoding of the full frame, or the tiles,
is done by dedicated hardware encoders that are separated from other
workloads (compute or graphics), so they are not affected by any other
load on the GPU and work asynchronously. This makes encoding a
fire-and-forget operation: the submitting thread does not need to wait
for the encoding to finish, allowing to capture high frame rates. Once
the frame is encoded it is downloaded into main memory, sliced to
fit UDP packets and sent to the consumer. We use a constant quality
parameter and the maximum bitrate of the encoder is not limited, i. e.
the encoding will always reach the desired quality, and we insert a key
frame in regular intervals. This quality parameter can be set to integral
values between 51 and 1, with 51 resulting in the lowest quality and 1

yielding the best quality – basically turning off compression. In order
to adapt the quality we use a map that contains an offset for the quality
parameter of each macroblock. This allows us to change the quality
parameter in the interval [11,51] for each macroblock individually.
According to our experiments, going lower than 11 does not yield
any visible difference and only increases the required bandwidth. We
scale the quality parameter for macroblocks inside the foveated region
between 11 (close to the centre) and 51 (at the border). Decoding, same
as encoding, is performed asynchronously on the dedicated hardware
units on the GPU. Each decoded frame is copied into the display queue
where it remains until it is displayed. In case the frame is divided
instead of downscaled we use a separate encoder and decoder for each
tile.

Network We support two classes of network technologies: side-
local communication between nodes driving a single tiled display (as
well as arbitrary other nodes that can provide frames) and internet
communication between sides. For communication between sides we
use our own UDP-based protocol in order to achieve the best possi-
ble saturation of the network and to avoid latency introduced by TCP.
On-side communication is implemented using the Message Passing
Interface (MPI), which is the de-facto standard for communication in
HPC clusters. MPI has the advantage of providing specialised imple-
mentations for high-speed network technologies like InfiniBand (IB)
that talk almost directly to the hardware, while it also can be used with
standard Ethernet connections.

Display We render the decoded and assembled frames directly, the-
refore all scaling and positioning transformations are performed on the
fly on the GPU. In order to ensure that the displayed frame is consistent,
even if it is displayed across multiple nodes, we provide two different
approaches: The first one uses an MPI barrier that synchronises all
nodes just before the buffer swap of the next frame. This is a portable
solution, but it does not guarantee that the buffer swap is happening
at exactly the same time and it is a comparably expensive operation.
The second one is based on NVIDIA’s Quadro Sync technology [24],
which requires additional hardware support to use it. Quadro Sync uses
a proprietary protocol in the graphics driver and a separate Ethernet
network to ensure that all displays swap buffers at the same time. This
makes it the preferred way to synchronise the output over multiple
display nodes as it does not interfere with MPI or any other component
of the software.

5 IMPLEMENTATION

Architecture and implementation of our system are designed such that
the system can run in different kinds of tiled display environments,
while utilising any hardware support available. To achieve this, we use
a declarative approach via XML, which allows to configure each node
in the system in the same file. The nodes are identified by pertinent

Reordering Video decoder
NVDEC

Display

Tiles
(NV12)

Encoded Video
(H.264)

Internal connections
(MPI)

Encoded Video
(H.264)

MPI cluster
communicator

Point-to-point
communication

Tracking data Relay

Foveated
Regions

Point-to-point
communication

Point-to-point
connections

(UDP)

MPI cluster
communicator

MPI cluster
communicator

Relay

MPI cluster
communicator

Internal connections
(MPI)

Video encoder
NVENCScreen capturing

Reordering

Encoded Video
(H.264)

Foveated
Regions

Foveated
Regions

Tiles
(ARGB)

Fig. 2: Overview of the full system. On the left is the server side and on the right the client side, separated by the dotted line. Depicted are the
display nodes of the large displays and the streaming nodes, which transmit the data between the sides. For each node we show the components
(see Sect. 5) of the system and data flow between them. Teal-coloured connections represent raw images, while purple connections represent
encoded images. The tracking data, i. e. the look-at rectangles, are represented by orange connections. Black-coloured connections represent any
of the above, i. e. data-agnostic communication links.

strings like the host name, an IP address or one of the MAC addresses
of the computer. The settings for encoder and decoder can also be
configured in the same file, as well as the number of tiles per node, in
case foveated encoding is used.

Our system is written in C++ and relies on Direct3D 11, the Desktop
Duplication API [20], the Video Codec SDK (version 8.2.15) from
NVIDIA [25] and NVIDIA’s NVAPI. The Video Codec SDK contains
NVENC that is used to encode video streams on the GPU and NVDEC
for decoding them, again on the GPU. NVAPI allows to address the
proprietary framelock feature of Quadro GPUs, Quadro Sync. Our
aim was to be as efficient as possible in our implementation to be
able to process all data in real time. On the CPU we use zero-copy
implementations whenever possible and we try to avoid memory al-
locations by using pools of frequently used objects. Additionally we
avoid moving data between the CPU and GPU and reduce the number
of GPU-to-GPU copies. In the following, we describe the integration
and interplay of these components in the full system (cf. Fig. 2). Below,
where applicable, we first describe the normal use and then the changes
we made for the foveated encoding.

5.1 Tracking data

In order to acquire the foveated regions for the encoding we can track
the viewing direction of multiple users. For this, we use devices equip-
ped with reflective markers. Each device, referred to as rigid body,
has a unique pattern of reflectors that is used as an identifier in the
system. We use a system that consists of two Prime 13 cameras and
22 S250e cameras from NaturalPoint OptiTrack and use their software
Motive to stream the current position and orientation of each rigid body
to any machine on the same network via UDP. It is vital to calibrate
the initial orientation of a rigid-body in reference to the display, this
enables computing a correct look-at rectangle for the foveated regions.
Therefore, we determine the position of the bottom left corner of the
display in the tracking coordinate system. In addition to the position
we also set the height and width of the display, which determine the up
vector and right vector of the display. To calibrate a rigid body, it needs
to be placed inside the tracked area, pointing towards the display. The
orientation of the rigid body, as seen by the tracking system, is saved
automatically, so each rigid body only needs to be calibrated once.

Next, we describe how to compute the look-at rectangles for a single
rigid body. For this, we first need to determine the intersection of
the view direction with the display plane. A 2D illustration of the
setup with two rigid bodies, including the relevant variables used in the
calculation, is depicted in Fig. 3.

Intersection In order to compute the intersection point �s on the
display plane, we first determine the observer’s viewing direction �d.

�d = Q̃rb ·Q−1
rb ·

(
0

−�nd

)
(3)

Here, we use the quaternion Q̃rb that represents the current orientation
of the rigid body, the inverse quaternion Q−1

rb of its calibrated neutral
orientation and the normal vector�nd ∈ R3. The normal of the display
plane�nd points towards the tracking area in front of the display wall.
Using the First Intercept Theorem, we then compute the distance δ
between the position of the rigid-body and the intersection point on the
display:

δ =
�nd · (�prb −�od)

�nd · (−�̂d)
. (4)

Here, �̂d is the normalised vector �d,�od ∈R3 is the physical origin of the
display, for which we use the bottom left corner, and �prb ∈ R3 is the
current position of the rigid body. Using the distance δ , we compute
the intersection point�s:

�s = (�prb +δ · �̂d)−�od ∈ R3. (5)

In order to deal with different resolutions at the two locations, we
convert the intersection point into relative screen-space coordinates:

�̂s(x,y) ∈ R2 : x =

(
�̂rd ·�s

)

w
,y =

(
�̂ud ·�s

)

h
,

with x,y ∈ [0,1] .

(6)

Here, h and w denote the height and width of the display, �̂ud the nor-
malised vector in the up-direction of the display and �̂rd the normalised
vector in the right-direction. The latter two are determined during the
calibration step.

Foveated region Our foveated region is a rectangle that is spanned
by four vectors�ci, i ∈ {1,2,3,4}, starting from the position of the rigid
body. Therefore, we compute the intersections with the display as
described in the previous paragraph. We use the horizontal angle α
and vertical angle β in order to compute the perspective projection.
First, the current up vector �u and right vector�r of the rigid body are
computed, based on the up- and right-vectors of the display as specified

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

1854 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

in the calibration step:

�u = Q̃rb ·Q−1
rb ·

(
0
�̂ud

)
∈ R3

�r = Q̃rb ·Q−1
rb ·

(
0
�̂rd

)
∈ R3.

Half of the horizontal and vertical extents of the rectangle in normalised
viewing directions are computed as follows:

δα = tan
(α ·π

180

)

δβ = tan
(

β ·π
180

)
.

The vectors�ci spanning the rectangle can then be computed with the

normalised vectors �̂d, �̂u and �̂r:

�ci = �̂d ± (δα ·�̂r)± (δβ ·�̂u) ∈ R3. (7)

Using Eqs. 4, 5 and 6, the relative intersection coordinates, �̂si ∈ R2, of
the vectors with the display can be computed. If all points are outside
of the interval [0,1], their coordinates will be changed to inf, otherwise
points will be clamped to the interval. We use 25° for the angles α
and β , in order to get a very conservative estimate of the bounding box
surrounding the macula of an average human.

5.2 Screen capturing
In order to gain fast access to the full desktop image as a texture we use
the Desktop Duplication API. It provides applications with a BGRA
texture whenever part of the displayed desktop is changed. Since
NVENC expects RGB input to be in the ARGB colour format we use
a compute shader to perform the necessary conversion. This shader
also handles the optional rotation of the texture, since the Desktop
Duplication API handles display rotations by rotating the content of
the texture and not the texture itself. For example a display with a
resolution of 4096×1200 in portrait mode outputs a texture with the
resolution 4096×1200 and the content rotated by 90°, instead of the
expected 1200×4096 texture. Technically, the rotation in the shader
is implemented without actually moving pixels, but by rotating the
texture coordinates. Since a single desktop image might exceed the
maximum resolution of the encoder (4096×4096 for Maxwell GPUs)
we also implemented downscaling, using bilinear interpolation, and
dividing the texture into equally sized tiles by using a texture array.
The shader outputs either a texture using the ARGB colour format
containing the full display content after optionally downscaling and
rotating, or a texture array using the ARGB colour format containing
the tiled display content after an optional rotation. In both cases the
resulting texture (array) is passed to the hardware encoder directly.

5.3 Encode
We used the NVIDIA Video Codec SDK (NVENC), which provides
access to dedicated hardware encoders. It allows us to asynchronously
encode the captured frames without piping data that is already on the
GPU through main memory. For GTX, RTX and Titan cards the number
of parallel encoder sessions is limited to two, while it is unlimited
for Quadro type cards. NVENC uses Direct3D 2D interop textures,
which provide CUDA and Direct3D access to the same underlying
GPU memory. This allows us to avoid an additional copy of the frame
after the colour conversion and optional transformation of the frame
(see Sect. 5.2). The encoder works with a ring buffer, each element
contains one Direct3D 2D interop texture and an output buffer that will
contain the encoded frame. The compute shader, described in Sect. 5.2,
directly uses the input texture of the element in the ring buffer as its
output. Encoding happens in-place and the encoder signals an event
for each element whenever a frame is encoded. We insert a key frame
regularly in order to avoid artefacts from intra frames that can occur
from sudden movements or new objects appearing. In case the texture

Ԧ𝑐𝑐𝐵𝐵,1Ԧ𝑐𝑐𝐴𝐴,2

𝑛𝑛𝑑𝑑
Ԧ𝑜𝑜𝑑𝑑

(Ԧ𝑝𝑝𝑟𝑟𝑟𝑟𝐵𝐵 , ෨𝑄𝑄𝑟𝑟𝑟𝑟𝐵𝐵)
(Ԧ𝑝𝑝𝑟𝑟𝑟𝑟𝐴𝐴 , ෨𝑄𝑄𝑟𝑟𝑟𝑟𝐴𝐴)

𝛿𝛿𝐵𝐵
𝛿𝛿𝐴𝐴

Ԧ𝑑𝑑𝐵𝐵
Ԧ𝑑𝑑𝐴𝐴

Ԧ𝑠𝑠𝐵𝐵Ԧ𝑠𝑠𝐴𝐴

𝛼𝛼
𝛼𝛼

Ԧ𝑠𝑠𝐴𝐴,1 Ԧ𝑠𝑠𝐴𝐴,2 Ԧ𝑠𝑠𝐵𝐵,1 Ԧ𝑠𝑠𝐵𝐵,2

Fig. 3: Schematic illustration of our tracking with two rigid-bodies A
and B, depicted in the xz-plane. First, the intersection �s of the view
direction �d with the display wall is calculated based on position and
orientation of the rigid body. In a second step, the corner vectors ci
of the foveated region are determined using the angle α , and used to
calculate the intersection points si with the display wall.

is divided into smaller tiles we use one encoder session for each tile, if
that is possible. When the maximum number of sessions is too limited,
a single session can encode multiple tiles, but this increases latency and
in addition the required bandwidth, since each frame must be encoded
as a key frame. Therefore it is recommended to use downscaling in this
case.

For the foveated encoding we change the quality parameter of each
macroblock, which has a size of 16×16 pixels, based on its distance
from the centre of the foveated regions. This quality parameter can be
set to integral values between 51 and 1, with 51 resulting in the lowest
quality and 1 in the best quality (cf. Sect. 4). With a quality parameter
of 51 the encoder computes the average colour for each macroblock
and with a quality parameter of 1 the compression is basically turned
off. Note that the impact of this parameter has been investigated closely
in previous work (e.g., Kourtis et al. [17] demonstrate the correlation
to SSIM). Based on the overall size of the tiled image and the position
of each machine, we compute the rectangle of each macroblock and
its centre. Then two maps are created, each contains the offset for
the quality parameter of every macroblock. This allows us to use
double buffering, i. e. updating the parameters for the next frame
while we encode the current frame using the current parameters. Both
are initialised with the value 0 for every macroblock. Every time
foveated regions are received the intersection between the regions and
the rectangles of the macroblocks is computed. For all macroblocks
inside a region the distance d between the two centres is computed
and scaled to the interval [0,1], see Equation 1. Using Equation 2 we
compute the desired quality parameter QP for every macroblock. To get
the offset O, which is stored inside the map, we compute the difference
to the lowest quality parameter: O = QP−51. NVENC uses this map
to change the quality parameter for each macroblock from the constant
value, 51 in our case, to the desired one.

5.4 Network
We use an I/O completion port (IOCP) [21] to process all send and
receive operations of the communication between sides asynchronously.
An IOCP is a queue for completion events of asynchronous I/O ope-
rations managed by the operating system. To process the completion
events, a thread pool is created, which uses the native parallelism of
the underlying hardware to determine the number of threads. With all
internet communication in one place we can pool the memory in chunks
of the largest UDP packet the system can receive, which is 64 kb, in
order to avoid costly heap (re-)allocations.

For the side-local communication we assign a single role, or a com-
bination of roles, to each node in the local cluster, based on the user-
provided configuration. Supported roles are provider and receiver.
Providers are nodes that capture frames, generate tracking data or relay
data. Receivers are nodes that receive encoded frames or tracking data
and display it. When the software is started, all local nodes exchange
their roles, the data they provide as well as the data they are interested
in, resulting in a map that allows for optimising the communication
in the way that only the required point-to-point transfers are initiated.

� �

Displays

Display nodes

High-speed
interconnect

Local area network

Streaming node

Displays

Display nodes

High-speed
interconnectStreaming node

Fig. 4: Hardware setup used in our measurements of throughput and latency of foveated and non-foveated encoding. The two streaming nodes are
connected using a 10-Gbit/s-Ethernet network adapter while the display nodes are part of the low-latency InfiniBand network.

All send and receive operations are asynchronous and non-blocking
calls. We coalesce all data that requires sending while the previous
send operation is not completed and then send it all at once, which has
the benefit of increasing the network throughput. Again we pool the
memory, in order to avoid heap allocations.

5.5 Decode

The video decoder (NVDEC) works similar to the encoder and is ini-
tialised on-the-fly as it needs the settings of the encoder. It uses a
separate internal ring buffer on the GPU which contains the encoded
frames as well as the decoded frames when decoding finishes. Once
the the frames have been fully assembled they are queued for decoding,
triggering a chain of callbacks. The last callback signals that the deco-
ding is finished and contains the pointer to the CUDA GPU memory
where the frame is located. We copy the frame into a separate ring
buffer that holds the frame until it was displayed. This display queue
contains Direct3D interop textures again so we can copy directly from
the CUDA memory to the texture that is later displayed. In case the
texture is divided into smaller tiles we use one decoder for each tile
and the final frame is created by copying the tiles to their respective
position.

5.6 Display

We use Direct3D for rendering and all scaling and positioning trans-
formations are performed on the fly on the GPU. This also includes
clipping the frame to match the segment of the tiled display the re-
spective node is responsible for. As the decoder produces frames in the
NV12 colour format we perform colour conversion to RGBA directly in
the pixel shader in order to avoid further copies or shader calls. Again,
since the decoded frames already reside on the GPU, we avoid transfers
between GPU and main memory.

6 RESULTS

We performed a quantitative evaluation of our system by measuring the
latency and throughput required to share the content of a tiled display
with the resolution of 10800× 4096 in a local area network setting,
with and without using foveated encoding. The local setting provides
a controlled network environment and it allows for visual inspection
of latency as it transmits from the right to the left stereo channel of
the tiled display. We used the same camera trajectory for visualizing a
molecular dynamics simulation, which was shown twice, for all tests
discussed in the remainder of this section.

Evaluation focus We particularly address these questions:
• Does the foveated encoding have a negative effect on the encoding

and decoding latency?
• Do different foveated intervals have an impact on the latency?
• What is the impact of the optional downscaling or tiling of the

input image on the latency ?
• By how much can the required bandwidth be reduced when using

foveated encoding with different intervals as well as single and
multiple users?

Hardware details The display nodes that drive the tiled display
are each equipped with an NVIDIA Quadro M6000, two Xeon E5-
2640v3 CPUs and 256 GB of RAM. Each of them is responsible for
a tile of 1200×4096 pixels of the overall screen. The two streaming
nodes are part of the low-latency InfiniBand network that connects
the display nodes and are also connected to each other with a 10 Gb
network adapter. Both are equipped with an Intel Core i7-6850K, 64 GB
of RAM and a GeForce GTX 1060. All machines, the display nodes
and the two streaming nodes, run on Windows Server 2016. Fig. 4
shows a schematic overview of the hardware setup we used for the
evaluation. The left half shows the server side, while the right half
shows the client side. They are connected to each other via the 10 Gb
network adapters of the streaming nodes.

Test scenarios For the non-foveated encoding tests we created
three encoder settings: low, medium and high. They have the same
settings as for the foveated encoding but a different constant quality
parameter. The low setting uses a value of 51, the medium setting a
value of 31 and the high setting a value of 11. This corresponds to the
upper and lower value of the interval used by the foveated encoding
and the medium value is in the middle.

We tested the non-foveated encoding three times, once for each en-
coder setting applied uniformly to the whole image, and measured the
latency of the encoding and decoding operations as well as the throug-
hput. Additionally, we tested the impact of the tiling on the latency
and the throughput for the medium setting. The foveated encoding
was tested in multiple scenarios. First, we tested the impact on the
bandwidth and latency with no look-at rectangle present. Second, we
tested the impact on the bandwidth and latency by tracking one user
and two users that observed the visualisation simultaneously. Third, we
tested the impact on the bandwidth and latency, as well as the visual
quality, by using the lower-quality interval [31,51] for the foveated
region instead of the default [11,51]. For all tests we captured 60 fps.

We measured the duration of each individual operation, e. g. enco-
ding, and stored it in a vector. We then periodically, i. e. after every
2000th measurement, computed the minimum, maximum, average, and
median duration and the median absolute deviation from the values
in the vector and stored them in a file. For all scenarios, we used the
algorithm by Cristian [6] to synchronise the clocks of the nodes to an
external time source.

Test results Fig. 5 depicts the measured latencies, in milliseconds,
for the major steps of the non-foveated and foveated tests. The plotted
values depict the worst case measured across all nodes, with the vari-
ance between the nodes being about 2 ms throughout. The coloured
horizontal lines represent the median values for the different configura-
tions, while the coloured bars represent the median absolute deviation.
Minimum and maximum values are indicated by the grey lines. The
latency introduced by steps like the reordering of network messages,
the assembly of frames and the MPI communication are not shown
individually in the graph (their combined impact is well below 1 ms).
However, they are included in the Complete (Source) and Complete
(Display) columns. Complete (Source) represents the complete dura-
tion from capturing a frame to sending it, while Complete (Display)
represents the complete duration from receiving a frame to displaying
it. We also do not show the network latency as it is around 0.1 ms due

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

FRIEß ET AL.: FOVEATED ENCODING FOR LARGE HIGH-RESOLUTION DISPLAYS 1855

in the calibration step:

�u = Q̃rb ·Q−1
rb ·

(
0
�̂ud

)
∈ R3

�r = Q̃rb ·Q−1
rb ·

(
0
�̂rd

)
∈ R3.

Half of the horizontal and vertical extents of the rectangle in normalised
viewing directions are computed as follows:

δα = tan
(α ·π

180

)

δβ = tan
(

β ·π
180

)
.

The vectors�ci spanning the rectangle can then be computed with the

normalised vectors �̂d, �̂u and �̂r:

�ci = �̂d ± (δα ·�̂r)± (δβ ·�̂u) ∈ R3. (7)

Using Eqs. 4, 5 and 6, the relative intersection coordinates, �̂si ∈ R2, of
the vectors with the display can be computed. If all points are outside
of the interval [0,1], their coordinates will be changed to inf, otherwise
points will be clamped to the interval. We use 25° for the angles α
and β , in order to get a very conservative estimate of the bounding box
surrounding the macula of an average human.

5.2 Screen capturing
In order to gain fast access to the full desktop image as a texture we use
the Desktop Duplication API. It provides applications with a BGRA
texture whenever part of the displayed desktop is changed. Since
NVENC expects RGB input to be in the ARGB colour format we use
a compute shader to perform the necessary conversion. This shader
also handles the optional rotation of the texture, since the Desktop
Duplication API handles display rotations by rotating the content of
the texture and not the texture itself. For example a display with a
resolution of 4096×1200 in portrait mode outputs a texture with the
resolution 4096×1200 and the content rotated by 90°, instead of the
expected 1200×4096 texture. Technically, the rotation in the shader
is implemented without actually moving pixels, but by rotating the
texture coordinates. Since a single desktop image might exceed the
maximum resolution of the encoder (4096×4096 for Maxwell GPUs)
we also implemented downscaling, using bilinear interpolation, and
dividing the texture into equally sized tiles by using a texture array.
The shader outputs either a texture using the ARGB colour format
containing the full display content after optionally downscaling and
rotating, or a texture array using the ARGB colour format containing
the tiled display content after an optional rotation. In both cases the
resulting texture (array) is passed to the hardware encoder directly.

5.3 Encode
We used the NVIDIA Video Codec SDK (NVENC), which provides
access to dedicated hardware encoders. It allows us to asynchronously
encode the captured frames without piping data that is already on the
GPU through main memory. For GTX, RTX and Titan cards the number
of parallel encoder sessions is limited to two, while it is unlimited
for Quadro type cards. NVENC uses Direct3D 2D interop textures,
which provide CUDA and Direct3D access to the same underlying
GPU memory. This allows us to avoid an additional copy of the frame
after the colour conversion and optional transformation of the frame
(see Sect. 5.2). The encoder works with a ring buffer, each element
contains one Direct3D 2D interop texture and an output buffer that will
contain the encoded frame. The compute shader, described in Sect. 5.2,
directly uses the input texture of the element in the ring buffer as its
output. Encoding happens in-place and the encoder signals an event
for each element whenever a frame is encoded. We insert a key frame
regularly in order to avoid artefacts from intra frames that can occur
from sudden movements or new objects appearing. In case the texture

Ԧ𝑐𝑐𝐵𝐵,1Ԧ𝑐𝑐𝐴𝐴,2

𝑛𝑛𝑑𝑑
Ԧ𝑜𝑜𝑑𝑑

(Ԧ𝑝𝑝𝑟𝑟𝑟𝑟𝐵𝐵 , ෨𝑄𝑄𝑟𝑟𝑟𝑟𝐵𝐵)
(Ԧ𝑝𝑝𝑟𝑟𝑟𝑟𝐴𝐴 , ෨𝑄𝑄𝑟𝑟𝑟𝑟𝐴𝐴)

𝛿𝛿𝐵𝐵
𝛿𝛿𝐴𝐴

Ԧ𝑑𝑑𝐵𝐵
Ԧ𝑑𝑑𝐴𝐴

Ԧ𝑠𝑠𝐵𝐵Ԧ𝑠𝑠𝐴𝐴

𝛼𝛼
𝛼𝛼

Ԧ𝑠𝑠𝐴𝐴,1 Ԧ𝑠𝑠𝐴𝐴,2 Ԧ𝑠𝑠𝐵𝐵,1 Ԧ𝑠𝑠𝐵𝐵,2

Fig. 3: Schematic illustration of our tracking with two rigid-bodies A
and B, depicted in the xz-plane. First, the intersection �s of the view
direction �d with the display wall is calculated based on position and
orientation of the rigid body. In a second step, the corner vectors ci
of the foveated region are determined using the angle α , and used to
calculate the intersection points si with the display wall.

is divided into smaller tiles we use one encoder session for each tile, if
that is possible. When the maximum number of sessions is too limited,
a single session can encode multiple tiles, but this increases latency and
in addition the required bandwidth, since each frame must be encoded
as a key frame. Therefore it is recommended to use downscaling in this
case.

For the foveated encoding we change the quality parameter of each
macroblock, which has a size of 16×16 pixels, based on its distance
from the centre of the foveated regions. This quality parameter can be
set to integral values between 51 and 1, with 51 resulting in the lowest
quality and 1 in the best quality (cf. Sect. 4). With a quality parameter
of 51 the encoder computes the average colour for each macroblock
and with a quality parameter of 1 the compression is basically turned
off. Note that the impact of this parameter has been investigated closely
in previous work (e.g., Kourtis et al. [17] demonstrate the correlation
to SSIM). Based on the overall size of the tiled image and the position
of each machine, we compute the rectangle of each macroblock and
its centre. Then two maps are created, each contains the offset for
the quality parameter of every macroblock. This allows us to use
double buffering, i. e. updating the parameters for the next frame
while we encode the current frame using the current parameters. Both
are initialised with the value 0 for every macroblock. Every time
foveated regions are received the intersection between the regions and
the rectangles of the macroblocks is computed. For all macroblocks
inside a region the distance d between the two centres is computed
and scaled to the interval [0,1], see Equation 1. Using Equation 2 we
compute the desired quality parameter QP for every macroblock. To get
the offset O, which is stored inside the map, we compute the difference
to the lowest quality parameter: O = QP−51. NVENC uses this map
to change the quality parameter for each macroblock from the constant
value, 51 in our case, to the desired one.

5.4 Network
We use an I/O completion port (IOCP) [21] to process all send and
receive operations of the communication between sides asynchronously.
An IOCP is a queue for completion events of asynchronous I/O ope-
rations managed by the operating system. To process the completion
events, a thread pool is created, which uses the native parallelism of
the underlying hardware to determine the number of threads. With all
internet communication in one place we can pool the memory in chunks
of the largest UDP packet the system can receive, which is 64 kb, in
order to avoid costly heap (re-)allocations.

For the side-local communication we assign a single role, or a com-
bination of roles, to each node in the local cluster, based on the user-
provided configuration. Supported roles are provider and receiver.
Providers are nodes that capture frames, generate tracking data or relay
data. Receivers are nodes that receive encoded frames or tracking data
and display it. When the software is started, all local nodes exchange
their roles, the data they provide as well as the data they are interested
in, resulting in a map that allows for optimising the communication
in the way that only the required point-to-point transfers are initiated.

� �

Displays

Display nodes

High-speed
interconnect

Local area network

Streaming node

Displays

Display nodes

High-speed
interconnectStreaming node

Fig. 4: Hardware setup used in our measurements of throughput and latency of foveated and non-foveated encoding. The two streaming nodes are
connected using a 10-Gbit/s-Ethernet network adapter while the display nodes are part of the low-latency InfiniBand network.

All send and receive operations are asynchronous and non-blocking
calls. We coalesce all data that requires sending while the previous
send operation is not completed and then send it all at once, which has
the benefit of increasing the network throughput. Again we pool the
memory, in order to avoid heap allocations.

5.5 Decode

The video decoder (NVDEC) works similar to the encoder and is ini-
tialised on-the-fly as it needs the settings of the encoder. It uses a
separate internal ring buffer on the GPU which contains the encoded
frames as well as the decoded frames when decoding finishes. Once
the the frames have been fully assembled they are queued for decoding,
triggering a chain of callbacks. The last callback signals that the deco-
ding is finished and contains the pointer to the CUDA GPU memory
where the frame is located. We copy the frame into a separate ring
buffer that holds the frame until it was displayed. This display queue
contains Direct3D interop textures again so we can copy directly from
the CUDA memory to the texture that is later displayed. In case the
texture is divided into smaller tiles we use one decoder for each tile
and the final frame is created by copying the tiles to their respective
position.

5.6 Display

We use Direct3D for rendering and all scaling and positioning trans-
formations are performed on the fly on the GPU. This also includes
clipping the frame to match the segment of the tiled display the re-
spective node is responsible for. As the decoder produces frames in the
NV12 colour format we perform colour conversion to RGBA directly in
the pixel shader in order to avoid further copies or shader calls. Again,
since the decoded frames already reside on the GPU, we avoid transfers
between GPU and main memory.

6 RESULTS

We performed a quantitative evaluation of our system by measuring the
latency and throughput required to share the content of a tiled display
with the resolution of 10800× 4096 in a local area network setting,
with and without using foveated encoding. The local setting provides
a controlled network environment and it allows for visual inspection
of latency as it transmits from the right to the left stereo channel of
the tiled display. We used the same camera trajectory for visualizing a
molecular dynamics simulation, which was shown twice, for all tests
discussed in the remainder of this section.

Evaluation focus We particularly address these questions:
• Does the foveated encoding have a negative effect on the encoding

and decoding latency?
• Do different foveated intervals have an impact on the latency?
• What is the impact of the optional downscaling or tiling of the

input image on the latency ?
• By how much can the required bandwidth be reduced when using

foveated encoding with different intervals as well as single and
multiple users?

Hardware details The display nodes that drive the tiled display
are each equipped with an NVIDIA Quadro M6000, two Xeon E5-
2640v3 CPUs and 256 GB of RAM. Each of them is responsible for
a tile of 1200×4096 pixels of the overall screen. The two streaming
nodes are part of the low-latency InfiniBand network that connects
the display nodes and are also connected to each other with a 10 Gb
network adapter. Both are equipped with an Intel Core i7-6850K, 64 GB
of RAM and a GeForce GTX 1060. All machines, the display nodes
and the two streaming nodes, run on Windows Server 2016. Fig. 4
shows a schematic overview of the hardware setup we used for the
evaluation. The left half shows the server side, while the right half
shows the client side. They are connected to each other via the 10 Gb
network adapters of the streaming nodes.

Test scenarios For the non-foveated encoding tests we created
three encoder settings: low, medium and high. They have the same
settings as for the foveated encoding but a different constant quality
parameter. The low setting uses a value of 51, the medium setting a
value of 31 and the high setting a value of 11. This corresponds to the
upper and lower value of the interval used by the foveated encoding
and the medium value is in the middle.

We tested the non-foveated encoding three times, once for each en-
coder setting applied uniformly to the whole image, and measured the
latency of the encoding and decoding operations as well as the throug-
hput. Additionally, we tested the impact of the tiling on the latency
and the throughput for the medium setting. The foveated encoding
was tested in multiple scenarios. First, we tested the impact on the
bandwidth and latency with no look-at rectangle present. Second, we
tested the impact on the bandwidth and latency by tracking one user
and two users that observed the visualisation simultaneously. Third, we
tested the impact on the bandwidth and latency, as well as the visual
quality, by using the lower-quality interval [31,51] for the foveated
region instead of the default [11,51]. For all tests we captured 60 fps.

We measured the duration of each individual operation, e. g. enco-
ding, and stored it in a vector. We then periodically, i. e. after every
2000th measurement, computed the minimum, maximum, average, and
median duration and the median absolute deviation from the values
in the vector and stored them in a file. For all scenarios, we used the
algorithm by Cristian [6] to synchronise the clocks of the nodes to an
external time source.

Test results Fig. 5 depicts the measured latencies, in milliseconds,
for the major steps of the non-foveated and foveated tests. The plotted
values depict the worst case measured across all nodes, with the vari-
ance between the nodes being about 2 ms throughout. The coloured
horizontal lines represent the median values for the different configura-
tions, while the coloured bars represent the median absolute deviation.
Minimum and maximum values are indicated by the grey lines. The
latency introduced by steps like the reordering of network messages,
the assembly of frames and the MPI communication are not shown
individually in the graph (their combined impact is well below 1 ms).
However, they are included in the Complete (Source) and Complete
(Display) columns. Complete (Source) represents the complete dura-
tion from capturing a frame to sending it, while Complete (Display)
represents the complete duration from receiving a frame to displaying
it. We also do not show the network latency as it is around 0.1 ms due

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

1856 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Fig. 5: Overview of measured latencies for major steps of our system.
The underlying values are the worst case latencies measured across all
nodes, with the variance of other nodes below 2 ms. The plot shows
the median values (coloured horizontal lines) and the median absolute
deviation indicated as coloured bars. The minimum and maximum
latencies are indicated by grey lines. Complete (Source) shows the
complete duration from capturing the frame to sending it. Likewise,
Complete (Display) depicts the complete duration from receiving the
encoded frame to displaying it. Overall, it shows that there is only
very little difference in the encoding and decoding latency between the
foveated and the non-foveated case.

to the fact that we use a local area network. The Display queue column
shows the duration of copying the decoded frame into the display queue
as well as the time spent in the queue until the frame is displayed.

The major impact on the overall latency is the encoding with a me-
dian of around 6 ms and a maximum of 13 ms for the low and medium
settings. For the high settings the median increases slightly while the
maximum is 22 ms. The median value corresponds to the encoding
latency for intra frames while the maximum is the latency of encoding
key frames. The conversion and rotation of the frame takes around
1 ms with the maximum being 3 ms (if we do not perform any downsca-
ling). Downscaling has only a minimal impact, it increases the time to
convert the frame by about 1 ms, while scaling it from 1200×4096 to
600×2048. On the display side, the introduced latency is negligible
as all operations, i. e. reordering, assembly, decoding, copying into the
display queue, and waiting for the frame to be displayed only introduce
a latency around or below 1 ms. The only exception is accessing the
last decoded frame from NVDEC, which takes 5 ms for the low setting,
or more for the medium and high settings, and is responsible for the
majority of the introduced latency on the display side.

For the foveated encoding the latencies for one and two users where
nearly identical, therefore we only added the latency values for the
single user test. For this test, the observer never looked at one spot for
long and tried to cover all areas of the screen by walking in a random
pattern and also moving closer and further away from the display in
order to cover different-sized foveated regions. In case no foveated
region is present, the latency values do not change compared to the
non-fovated encoding using the low settings. If there is a region present,
the latency increases slightly, depending on the size of the region and
on the interval. For the [31,51] interval the latencies are lower than
for the default [11,51] interval. Overall, it shows that there is only
very little difference in the encoding and decoding latency between the
foveated and the non-foveated case.

Tiling does not increase the time it takes to convert the frame, but it
decreases the latency for the encoding of each tile and, since they are
encoded in parallel, the overall encoding latency. This can be seen in
Fig. 6 that shows the Complete (Source) and Complete (Display) laten-
cies for the medium setting and different numbers of tiles. Complete
(Source) increases if there are more than 32 tiles, because of the number
of encoder sessions and the fact that each tile is downloaded separately
through PCIe. For 2 to 32 tiles, the maximum latency decreases from

13 ms to about 8 ms because the encoder is able to handle the number
of sessions concurrently and because each tile is smaller. Complete
(Display) is largely unaffected but increases for more than 16 tiles.

In addition to the latency, we also measured the throughput for
the three non-foveated tests, as well as multiple foveated tests. The
aggregated measured throughput of all nodes for the non-foveated tests
can be seen in Fig. 7 together with two foveated tests. The first foveated
test uses the interval [11,51] and a single user, while the second uses
the interval [31,51]. The maximum measured throughput for the non-
foveated high encoder settings is about 2 Gb/s, for the medium settings
it is 540 Mb/s and for the low settings about 60 Mb/s. We tested the
impact of the tiling on the throughput with two configurations. The
first uses four tiles and four NVENC sessions, while the second one
again uses four tiles but only two NVENC sessions. As expected,
the first did not have any impact on the throughput, since the size
of the data was roughly the same and the size of the header of the
network message is negligible. As discussed in Sect. 5.3 the second
configuration only uses key frames and therefore increases the measured
throughput from 540 Mb/s to 1.3 Gb/s for the medium setting. The first
foveated test yielded roughly the same throughput as the non-foveated
low setting, with multiple smaller peaks to 85 Mb/s and a larger peak
to 131 Mb/s. We attribute these peaks to the fact that the users stood
further away from the screen and therefore the foveated region was
larger. Using the interval [31,51] reduced the measured throughput
by about 10 Mb/s compared to the [11,51] interval, while covering the
same region, although the maximum peak is 150 Mb/s. Again this can
be attributed to the fact that the foveated region was larger because
the user stood further away from the screen. For two users and the
interval [11,51] the measured throughput was slightly higher but on
average below 70 Mb/s with the occasional peaks. We repeated the tests
three times limiting the bandwidth of the connection between the server
and client side to 5, 2.5 and 1 Gb/s. The measured throughput was
unaffected and remained the same, except for the high setting which
did not work with the bandwidth limited to 1 Gb/s.

7 DISCUSSION

During testing, we noticed that both downscaling and tiling reduce
the latency of the encoding. For the downscaling this was expected
since the resolution was reduced and therefore the encoding has to be
faster. Also the downscaling did not increase the latency for the conver-
sion step tremendously even though it increases the number of texture
accesses by four. The reduction for the tiling was not expected, since
the encoder still encodes the same amount of pixels and downloads
each encoded tile separately. Again the encoding of each tile has to
be faster, as they are smaller than the full frame, but we expected the
transfer to have more of an impact. As it turned out, increasing the
number of tiles to two reduces the latency significantly. Between two
and 32 tiles the latency is lower than without using tiling. We assume
that at that point the context switch of the encoder and the time to
download each tile outweigh the reduced latency of the encoding. For
more than 32 tiles the latency increases significantly for each additional
tile, reaching over 25 ms for 64 tiles. This latency reduction mainly
depends on the resolution. Since our display nodes, with a resolution
of 1200×4096, are already close to the maximum of 4096×4096 the
impact is higher. The benefit shrinks significantly for lower resoluti-
ons and vanishes if the number of NVENC sessions is lower than the
number of tiles. In this case the latency increases since each session
has to encode multiple tiles and always uses key frames, increasing the
latency further. This also negatively impacts the measured throughput,
as seen in the test for the non-foveated medium quality setting using
four tiles and two NVENC sessions, increasing it by a factor of 2.4.
We therefore recommend that the number of tiles never exceed the
number of NVENC sessions, as this removes any benefit from using
the foveated encoding. We achieved the best latency by using two tiles
with 1200×2048 pixels for each of the ten display nodes. This reduced
the median overall latency, i. e. the time from capturing to displaying
the frame, to 11 ms and the maximum to 19 ms, resulting in the display
side being one frame behind the source side.

Latency across all scenarios was hardly noticeable in side-to-side

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1 2 4 6 8 16 32 48 64

La
te
nc
y
(m

s)

Number of tiles

Complete Process (display)
max
Complete Process (display)
med

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 4 6 8 16 32 48 64

La
te
nc
y
(m

s)

Number of tiles

Complete Process (source)
max
Complete Process (source)
med

Fig. 6: The impact on the Complete (Source) latency by tiling the frame into multiple smaller tiles is shown on the left. For one tile the maximum
(max) latency is 13 ms, it shrinks to 8 ms between 2 and 32 tiles and increases to more than 15 ms for more than 48 tiles. The impact on the
Complete (Display) latency by tiling the frame into multiple smaller tiles is shown on the right. Between 1 and 16 tiles the median (med) latency
is largely unaffected, it increases strongly for more than 16 tiles.

comparison, as it was below 30 ms for the whole system, from capturing
to displaying the frame. The major contribution to the overall latency, in
the non-foveated cases, with up to 22 ms on the source side, comes from
the NVENC. For the foveated encoding the latency ranges between
the low setting, in case no foveated region is present, and the high
setting, in case the region covers the whole display. During our tests
we never encountered the latter and latency was mostly around 7 ms
and at most 15 ms. Using tiling this latency can be reduced further to at
most 8 ms. The latency for the acquisition, transmission and processing
of the foveated regions was between 2 and 4 ms, taking the round trip
latency to a maximum of 32 ms and 17 ms in the median case.

In our testing the measured throughput for the foveated encoding
never exceeded 200 Mb/s, with the highest measured peak at 150 Mb/s.
The same can be said for multiple users, they did not increase the mea-
sured throughput by much. Therefore the foveated encoding requires
on average between 10 and 20 Mb/s more than the low setting, except
for situations when users want to get a complete overview over the
visualisation, see the peaks in Fig. 7. Similar to the latency the upper
and lower limit of the throughput are given by the interval of the quality
parameter. The high quality parameter set the upper limit, in our test
2 Gb/s, and the low quality the lower limit, 60 Mb/s. By adapting the
interval the upper limit can be reduced further to fit the maximum avai-

lable bandwidth. During our tests we noticed that there was hardly any
visible difference between the medium and the high encoding setting
and therefore added the second interval [31,51] to the tests to show
the possible savings. All in all the foveated encoding approach uses,
on average, 14 percent of the measured throughput required for the
non-foveated medium encoder settings (4 percent compared to high
encoder settings), while providing the same quality locally, i. e. where
users look at.

As can be seen in Fig. 8 at the example of a parallel coordinates
visualisation, the foveated region visibly increases the quality locally.
Fine lines that are hardly visible using the lowest encoding quality are
clearly defined while using roughly the same throughput. Also we
could not visually identify that the rest of the image was encoded with
the lowest possible quality since our very conservatively-sized foveated
region covered the macula of an average human perfectly. The high
precision of the tracking system detected very small movements, which
introduced a distracting flickering since the foveated region moved as
well, changing the quality parameters for every frame. We introduced
a small threshold to filter out little movements and to get rid of the
flickering. If the difference between the previous top left corner and
the current top left corner of the look-at rectangle is smaller than one
centimetre the rectangle is dropped.

0

250

500

750

1000

1250

1500

1750

2000

2250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

Th
ro
ug

hp
ut

(M
b/
s)

Time (s)

0

20

40

60

80

100

120

140

160

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

Th
ro
ug

hp
ut

(M
b/
s)

Time (s)

low

foveated [31,51]

foveated [11,51]

low

medium

high

Fig. 7: Aggregated measured throughput of all nodes for the three non-foveated tests are shown on the left side, while the two foveated tests and
the context-only test using the low setting are shown on the right. Both foveated tests use a static region and the intervals [31,51] and [11,51]
show that the first interval requires less bandwidth since the best quality setting is lower. The peaks for both foveated tests can be attributed to the
user standing further from the display, leading to a bigger foveated region so there are more macroblocks using a higher quality.

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

FRIEß ET AL.: FOVEATED ENCODING FOR LARGE HIGH-RESOLUTION DISPLAYS 1857

Fig. 5: Overview of measured latencies for major steps of our system.
The underlying values are the worst case latencies measured across all
nodes, with the variance of other nodes below 2 ms. The plot shows
the median values (coloured horizontal lines) and the median absolute
deviation indicated as coloured bars. The minimum and maximum
latencies are indicated by grey lines. Complete (Source) shows the
complete duration from capturing the frame to sending it. Likewise,
Complete (Display) depicts the complete duration from receiving the
encoded frame to displaying it. Overall, it shows that there is only
very little difference in the encoding and decoding latency between the
foveated and the non-foveated case.

to the fact that we use a local area network. The Display queue column
shows the duration of copying the decoded frame into the display queue
as well as the time spent in the queue until the frame is displayed.

The major impact on the overall latency is the encoding with a me-
dian of around 6 ms and a maximum of 13 ms for the low and medium
settings. For the high settings the median increases slightly while the
maximum is 22 ms. The median value corresponds to the encoding
latency for intra frames while the maximum is the latency of encoding
key frames. The conversion and rotation of the frame takes around
1 ms with the maximum being 3 ms (if we do not perform any downsca-
ling). Downscaling has only a minimal impact, it increases the time to
convert the frame by about 1 ms, while scaling it from 1200×4096 to
600×2048. On the display side, the introduced latency is negligible
as all operations, i. e. reordering, assembly, decoding, copying into the
display queue, and waiting for the frame to be displayed only introduce
a latency around or below 1 ms. The only exception is accessing the
last decoded frame from NVDEC, which takes 5 ms for the low setting,
or more for the medium and high settings, and is responsible for the
majority of the introduced latency on the display side.

For the foveated encoding the latencies for one and two users where
nearly identical, therefore we only added the latency values for the
single user test. For this test, the observer never looked at one spot for
long and tried to cover all areas of the screen by walking in a random
pattern and also moving closer and further away from the display in
order to cover different-sized foveated regions. In case no foveated
region is present, the latency values do not change compared to the
non-fovated encoding using the low settings. If there is a region present,
the latency increases slightly, depending on the size of the region and
on the interval. For the [31,51] interval the latencies are lower than
for the default [11,51] interval. Overall, it shows that there is only
very little difference in the encoding and decoding latency between the
foveated and the non-foveated case.

Tiling does not increase the time it takes to convert the frame, but it
decreases the latency for the encoding of each tile and, since they are
encoded in parallel, the overall encoding latency. This can be seen in
Fig. 6 that shows the Complete (Source) and Complete (Display) laten-
cies for the medium setting and different numbers of tiles. Complete
(Source) increases if there are more than 32 tiles, because of the number
of encoder sessions and the fact that each tile is downloaded separately
through PCIe. For 2 to 32 tiles, the maximum latency decreases from

13 ms to about 8 ms because the encoder is able to handle the number
of sessions concurrently and because each tile is smaller. Complete
(Display) is largely unaffected but increases for more than 16 tiles.

In addition to the latency, we also measured the throughput for
the three non-foveated tests, as well as multiple foveated tests. The
aggregated measured throughput of all nodes for the non-foveated tests
can be seen in Fig. 7 together with two foveated tests. The first foveated
test uses the interval [11,51] and a single user, while the second uses
the interval [31,51]. The maximum measured throughput for the non-
foveated high encoder settings is about 2 Gb/s, for the medium settings
it is 540 Mb/s and for the low settings about 60 Mb/s. We tested the
impact of the tiling on the throughput with two configurations. The
first uses four tiles and four NVENC sessions, while the second one
again uses four tiles but only two NVENC sessions. As expected,
the first did not have any impact on the throughput, since the size
of the data was roughly the same and the size of the header of the
network message is negligible. As discussed in Sect. 5.3 the second
configuration only uses key frames and therefore increases the measured
throughput from 540 Mb/s to 1.3 Gb/s for the medium setting. The first
foveated test yielded roughly the same throughput as the non-foveated
low setting, with multiple smaller peaks to 85 Mb/s and a larger peak
to 131 Mb/s. We attribute these peaks to the fact that the users stood
further away from the screen and therefore the foveated region was
larger. Using the interval [31,51] reduced the measured throughput
by about 10 Mb/s compared to the [11,51] interval, while covering the
same region, although the maximum peak is 150 Mb/s. Again this can
be attributed to the fact that the foveated region was larger because
the user stood further away from the screen. For two users and the
interval [11,51] the measured throughput was slightly higher but on
average below 70 Mb/s with the occasional peaks. We repeated the tests
three times limiting the bandwidth of the connection between the server
and client side to 5, 2.5 and 1 Gb/s. The measured throughput was
unaffected and remained the same, except for the high setting which
did not work with the bandwidth limited to 1 Gb/s.

7 DISCUSSION

During testing, we noticed that both downscaling and tiling reduce
the latency of the encoding. For the downscaling this was expected
since the resolution was reduced and therefore the encoding has to be
faster. Also the downscaling did not increase the latency for the conver-
sion step tremendously even though it increases the number of texture
accesses by four. The reduction for the tiling was not expected, since
the encoder still encodes the same amount of pixels and downloads
each encoded tile separately. Again the encoding of each tile has to
be faster, as they are smaller than the full frame, but we expected the
transfer to have more of an impact. As it turned out, increasing the
number of tiles to two reduces the latency significantly. Between two
and 32 tiles the latency is lower than without using tiling. We assume
that at that point the context switch of the encoder and the time to
download each tile outweigh the reduced latency of the encoding. For
more than 32 tiles the latency increases significantly for each additional
tile, reaching over 25 ms for 64 tiles. This latency reduction mainly
depends on the resolution. Since our display nodes, with a resolution
of 1200×4096, are already close to the maximum of 4096×4096 the
impact is higher. The benefit shrinks significantly for lower resoluti-
ons and vanishes if the number of NVENC sessions is lower than the
number of tiles. In this case the latency increases since each session
has to encode multiple tiles and always uses key frames, increasing the
latency further. This also negatively impacts the measured throughput,
as seen in the test for the non-foveated medium quality setting using
four tiles and two NVENC sessions, increasing it by a factor of 2.4.
We therefore recommend that the number of tiles never exceed the
number of NVENC sessions, as this removes any benefit from using
the foveated encoding. We achieved the best latency by using two tiles
with 1200×2048 pixels for each of the ten display nodes. This reduced
the median overall latency, i. e. the time from capturing to displaying
the frame, to 11 ms and the maximum to 19 ms, resulting in the display
side being one frame behind the source side.

Latency across all scenarios was hardly noticeable in side-to-side

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1 2 4 6 8 16 32 48 64

La
te
nc
y
(m

s)

Number of tiles

Complete Process (display)
max
Complete Process (display)
med

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 4 6 8 16 32 48 64

La
te
nc
y
(m

s)

Number of tiles

Complete Process (source)
max
Complete Process (source)
med

Fig. 6: The impact on the Complete (Source) latency by tiling the frame into multiple smaller tiles is shown on the left. For one tile the maximum
(max) latency is 13 ms, it shrinks to 8 ms between 2 and 32 tiles and increases to more than 15 ms for more than 48 tiles. The impact on the
Complete (Display) latency by tiling the frame into multiple smaller tiles is shown on the right. Between 1 and 16 tiles the median (med) latency
is largely unaffected, it increases strongly for more than 16 tiles.

comparison, as it was below 30 ms for the whole system, from capturing
to displaying the frame. The major contribution to the overall latency, in
the non-foveated cases, with up to 22 ms on the source side, comes from
the NVENC. For the foveated encoding the latency ranges between
the low setting, in case no foveated region is present, and the high
setting, in case the region covers the whole display. During our tests
we never encountered the latter and latency was mostly around 7 ms
and at most 15 ms. Using tiling this latency can be reduced further to at
most 8 ms. The latency for the acquisition, transmission and processing
of the foveated regions was between 2 and 4 ms, taking the round trip
latency to a maximum of 32 ms and 17 ms in the median case.

In our testing the measured throughput for the foveated encoding
never exceeded 200 Mb/s, with the highest measured peak at 150 Mb/s.
The same can be said for multiple users, they did not increase the mea-
sured throughput by much. Therefore the foveated encoding requires
on average between 10 and 20 Mb/s more than the low setting, except
for situations when users want to get a complete overview over the
visualisation, see the peaks in Fig. 7. Similar to the latency the upper
and lower limit of the throughput are given by the interval of the quality
parameter. The high quality parameter set the upper limit, in our test
2 Gb/s, and the low quality the lower limit, 60 Mb/s. By adapting the
interval the upper limit can be reduced further to fit the maximum avai-

lable bandwidth. During our tests we noticed that there was hardly any
visible difference between the medium and the high encoding setting
and therefore added the second interval [31,51] to the tests to show
the possible savings. All in all the foveated encoding approach uses,
on average, 14 percent of the measured throughput required for the
non-foveated medium encoder settings (4 percent compared to high
encoder settings), while providing the same quality locally, i. e. where
users look at.

As can be seen in Fig. 8 at the example of a parallel coordinates
visualisation, the foveated region visibly increases the quality locally.
Fine lines that are hardly visible using the lowest encoding quality are
clearly defined while using roughly the same throughput. Also we
could not visually identify that the rest of the image was encoded with
the lowest possible quality since our very conservatively-sized foveated
region covered the macula of an average human perfectly. The high
precision of the tracking system detected very small movements, which
introduced a distracting flickering since the foveated region moved as
well, changing the quality parameters for every frame. We introduced
a small threshold to filter out little movements and to get rid of the
flickering. If the difference between the previous top left corner and
the current top left corner of the look-at rectangle is smaller than one
centimetre the rectangle is dropped.

0

250

500

750

1000

1250

1500

1750

2000

2250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

Th
ro
ug

hp
ut

(M
b/
s)

Time (s)

0

20

40

60

80

100

120

140

160

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

Th
ro
ug

hp
ut

(M
b/
s)

Time (s)

low

foveated [31,51]

foveated [11,51]

low

medium

high

Fig. 7: Aggregated measured throughput of all nodes for the three non-foveated tests are shown on the left side, while the two foveated tests and
the context-only test using the low setting are shown on the right. Both foveated tests use a static region and the intervals [31,51] and [11,51]
show that the first interval requires less bandwidth since the best quality setting is lower. The peaks for both foveated tests can be attributed to the
user standing further from the display, leading to a bigger foveated region so there are more macroblocks using a higher quality.

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

1858 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 2, FEBRUARY 2021

Fig. 8: Two photos that show the difference between no foveated region (left) and the foveated region(right) at the example of parallel coordinates.
With the lowest quality parameter (51) the lines on the left photo are not clearly visible, sometimes not at all. The same is true outside of the
foveated region, but the lines inside it are clearly visible. The two red rectangles cover part of the foveated region and highlight the differences.

Since the large high-resolution display we developed for runs on
Microsoft Windows it was a natural choice to use respective APIs and
SDKs. However there are replacement options for the screen capturing
and encoding, namely the NVIDIA Capture SDK [23] (now deprecated
for Windows), that also work for Linux-based systems. As NVDEC also
works for Linux, porting the whole system is a mere implementation
effort which only replaces the screen capturing and encoding part.

8 CONCLUSION AND FUTURE WORK

We presented a system that reduces the bandwidth needed for remote
visualisation on large high-resolution displays. Our approach uses
foveated regions, encoding parts of the image inside these regions with
a higher quality than the rest of the image. This allows to reduce the
required bandwidth significantly while preserving high quality locally
in regions that (multiple) users actually focus on. As a result, our
approach is viable even if the available bandwidth is well below one
Gigabit.

In the future, we plan to add progressive encoding to the system
to improve image quality while its original content remains the same.
For this, we would gradually increase the quality of the encoding for
all macroblocks starting with the foveated regions. We also want to
investigate the quality parameter interval used for the foveated encoding,
in order to reduce the required bandwidth as much as possible. For this,
the quality parameter for the high quality could be reduced gradually
until a difference in quality to the original image becomes visible.
Additionally, the high quality constant parameter of the interval could
be increased based on the distance of the user to the display. While
this would result in reduced quality in the foveal region, the perceived
result might not be impacted.

ACKNOWLEDGMENTS

This work was partially funded by Deutsche Forschungsgemeinschaft
(DFG) as part of SFB-TRR 161 (Project ID 251654672) as well as part
of Software Sustainability for the Open-Source Particle Visualization
Framework MegaMol (Project ID 391302154).

REFERENCES

[1] T. Biedert, P. Messmer, T. Fogal, and C. Garth. Hardware-accelerated
multi-tile streaming for realtime remote visualization. In Proc. EGPGV,
pp. 33–43, 2018.

[2] M. R. Bolin and G. W. Meyer. A frequency based ray tracer. In Proc.
ACM SIGGRAPH, pp. 409–418, 1995.

[3] A. Bringmann, S. Syrbe, K. Görner, J. Kacza, M. Francke, P. Wiede-
mann, and A. Reichenbach. The primate fovea: Structure, function and
development. Prog. Retin. Eye Res., 2018.

[4] V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. Voronoi-
based foveated volume rendering. In EuroVis (Short Papers), pp. 67–71,
2019.

[5] Z. Chen and C. Guillemot. Perceptually-friendly h.264/avc video coding
based on foveated just-noticeable-distortion model. IEEE Trans. Circuits
Syst. Video Technol., pp. 806–819, 2010.

[6] F. Cristian. Probabilistic clock synchronization. Distrib. Comput., p.
146–158, 1989.

[7] J. Diepstraten, M. Gorke, and T. Ertl. Remote line rendering for mobile
devices. In Comput. Graph. Int., pp. 454–461, 2004.

[8] K. U. Doerr and F. Kuester. CGLX: A scalable, high-performance visu-
alization framework for networked display environments. IEEE Trans.
Visual Comput. Graphics, pp. 320–332, 2011.

[9] S. Eilemann, D. Steiner, and R. Pajarola. Equalizer 2.0 – convergence of a
parallel rendering framework. IEEE Trans. Visual Comput. Graphics, pp.
1292–1307, 2018.

[10] A. Febretti, A. Nishimoto, V. Mateevitsi, L. Renambot, A. Johnson, and
J. Leigh. Omegalib: A multi-view application framework for hybrid reality
display environments. In Proc. IEEE VR, pp. 9–14, 2014.

[11] S. Frey, F. Sadlo, and T. Ertl. Balanced sampling and compression for
remote visualization. In ACM SIGGRAPH Asia, p. 1, 2015.

[12] F. Frieß, M. Landwehr, V. Bruder, S. Frey, and T. Ertl. Adaptive encoder
settings for interactive remote visualisation on high-resolution displays.
In Proc. IEEE LDAV, pp. 87–91, 2018.

[13] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3D
graphics. ACM Trans. Graph., p. 164, 2012.

[14] R. Herzog, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel. Render2mpeg:
A perception-based framework towards integrating rendering and video
compression. In Comput. Graph. Forum, pp. 183–192, 2008.

[15] G. Illahi, M. Siekkinen, and E. Masala. Foveated video streaming for
cloud gaming. In IEEE Int. Workshop on Multimedia Signal Proc., pp.
1–6, 2017.

[16] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni, and
R. Scopigno. Protected interactive 3d graphics via remote rendering. In
ACM Trans. Graph., pp. 695–703, 2004.

[17] M.-A. Kourtis, H. G. Koumaras, and F. Liberal. Reduced-reference video
quality assessment using a static video pattern. J. Electron. Imaging, p.
043011, 2016.

[18] M. Levoy. Volume rendering by adaptive refinement. Vis. Comput., pp.
2–7, 1990.

[19] T. Marrinan, S. Rizzi, J. A. Insley, L. Long, L. Renambot, and M. E. Papka.
Pxstream: Remote visualization for distributed rendering frameworks. In
Proc. IEEE LDAV, pp. 37–41, 2019.

[20] Microsoft. Desktop Duplication API. Online, last acces-
sed 27/08/2020, 2018. https://docs.microsoft.com/en-
us/windows/desktop/direct3ddxgi/desktop-dup-api.

[21] Microsoft. I/O Completion Ports. Online, last accessed 27/08/2020,
2018. https://docs.microsoft.com/en-us/windows/desktop/fileio/i-o-
completion-ports.

[22] K. Moreland, D. Lepage, D. Koller, and G. Humphreys. Remote rendering
for ultrascale data. In J. Phys. Conf. Ser., p. 012096, 2008.

[23] NVIDIA. NVIDIA Capture SDK. Online, last accessed 27/08/2020.
https://developer.nvidia.com/capture-sdk.

[24] NVIDIA. NVIDIA Quadro Sync. Online, last accessed 27/08/2020.
https://www.nvidia.com/en-us/design-visualization/solutions/quadro-
sync.

[25] NVIDIA. NVIDIA Video Codec SDK. Online, last accessed 27/08/2020.
https://developer.nvidia.com/nvidia-video-codec-sdk.

[26] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel. Sca-
lable remote rendering with depth and motion-flow augmented streaming.
In Comput. Graph. Forum, pp. 415–424, 2011.

[27] K. Ponto, K. Doerr, T. Wypych, J. Kooker, and F. Kuester. CGLXTouch:
A multi-user multi-touch approach for ultra-high-resolution collaborative

workspaces. Future Gener. Comput. Syst., pp. 649–656, 2011.
[28] L. Renambot, T. Marrinan, J. Aurisano, A. Nishimoto, V. Mateevitsi,

K. Bharadwaj, L. Long, A. Johnson, M. Brown, and J. Leigh. SAGE2:
A collaboration portal for scalable resolution displays. Future Gener.
Comput. Syst., pp. 296–305, 2016.

[29] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V. Vishwa-
nath, V. Chandrasekhar, N. Schwarz, A. Spale, C. Zhang, G. Goldman,
J. Leigh, and A. Johnson. SAGE: the Scalable Adaptive Graphics Envi-
ronment. Proc. WACE, pp. 2004–2009, 2004.

[30] Sanghoon Lee and A. C. Bovik. Fast algorithms for foveated video
processing. IEEE Trans. Circuits Syst. Video Technol., pp. 149–162, 2003.

[31] S. Shi and C.-H. Hsu. A survey of interactive remote rendering systems.
ACM Comput. Surv., p. 57, 2015.

[32] M. Stengel, S. Grogorick, M. Eisemann, and M. Magnor. Adaptive image-
space sampling for gaze-contingent real-time rendering. In Comput. Graph.
Forum, pp. 129–139, 2016.

[33] H. Strasburger, I. Rentschler, and M. Jüttner. Peripheral vision and pattern
recognition: A review. J. Vis., pp. 13–13, 2011.

[34] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller, J. Nils-
son, J. Munkberg, J. Hasselgren, M. Sugihara, P. Clarberg, et al. Coarse
pixel shading. In Proc. HPG, pp. 9–18, 2014.

[35] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Hevc-
compliant tile-based streaming of panoramic video for virtual reality
applications. In Proc. ACM Int. Conf. Multimed., p. 601–605, 2016.

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

FRIEß ET AL.: FOVEATED ENCODING FOR LARGE HIGH-RESOLUTION DISPLAYS 1859

Fig. 8: Two photos that show the difference between no foveated region (left) and the foveated region(right) at the example of parallel coordinates.
With the lowest quality parameter (51) the lines on the left photo are not clearly visible, sometimes not at all. The same is true outside of the
foveated region, but the lines inside it are clearly visible. The two red rectangles cover part of the foveated region and highlight the differences.

Since the large high-resolution display we developed for runs on
Microsoft Windows it was a natural choice to use respective APIs and
SDKs. However there are replacement options for the screen capturing
and encoding, namely the NVIDIA Capture SDK [23] (now deprecated
for Windows), that also work for Linux-based systems. As NVDEC also
works for Linux, porting the whole system is a mere implementation
effort which only replaces the screen capturing and encoding part.

8 CONCLUSION AND FUTURE WORK

We presented a system that reduces the bandwidth needed for remote
visualisation on large high-resolution displays. Our approach uses
foveated regions, encoding parts of the image inside these regions with
a higher quality than the rest of the image. This allows to reduce the
required bandwidth significantly while preserving high quality locally
in regions that (multiple) users actually focus on. As a result, our
approach is viable even if the available bandwidth is well below one
Gigabit.

In the future, we plan to add progressive encoding to the system
to improve image quality while its original content remains the same.
For this, we would gradually increase the quality of the encoding for
all macroblocks starting with the foveated regions. We also want to
investigate the quality parameter interval used for the foveated encoding,
in order to reduce the required bandwidth as much as possible. For this,
the quality parameter for the high quality could be reduced gradually
until a difference in quality to the original image becomes visible.
Additionally, the high quality constant parameter of the interval could
be increased based on the distance of the user to the display. While
this would result in reduced quality in the foveal region, the perceived
result might not be impacted.

ACKNOWLEDGMENTS

This work was partially funded by Deutsche Forschungsgemeinschaft
(DFG) as part of SFB-TRR 161 (Project ID 251654672) as well as part
of Software Sustainability for the Open-Source Particle Visualization
Framework MegaMol (Project ID 391302154).

REFERENCES

[1] T. Biedert, P. Messmer, T. Fogal, and C. Garth. Hardware-accelerated
multi-tile streaming for realtime remote visualization. In Proc. EGPGV,
pp. 33–43, 2018.

[2] M. R. Bolin and G. W. Meyer. A frequency based ray tracer. In Proc.
ACM SIGGRAPH, pp. 409–418, 1995.

[3] A. Bringmann, S. Syrbe, K. Görner, J. Kacza, M. Francke, P. Wiede-
mann, and A. Reichenbach. The primate fovea: Structure, function and
development. Prog. Retin. Eye Res., 2018.

[4] V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. Voronoi-
based foveated volume rendering. In EuroVis (Short Papers), pp. 67–71,
2019.

[5] Z. Chen and C. Guillemot. Perceptually-friendly h.264/avc video coding
based on foveated just-noticeable-distortion model. IEEE Trans. Circuits
Syst. Video Technol., pp. 806–819, 2010.

[6] F. Cristian. Probabilistic clock synchronization. Distrib. Comput., p.
146–158, 1989.

[7] J. Diepstraten, M. Gorke, and T. Ertl. Remote line rendering for mobile
devices. In Comput. Graph. Int., pp. 454–461, 2004.

[8] K. U. Doerr and F. Kuester. CGLX: A scalable, high-performance visu-
alization framework for networked display environments. IEEE Trans.
Visual Comput. Graphics, pp. 320–332, 2011.

[9] S. Eilemann, D. Steiner, and R. Pajarola. Equalizer 2.0 – convergence of a
parallel rendering framework. IEEE Trans. Visual Comput. Graphics, pp.
1292–1307, 2018.

[10] A. Febretti, A. Nishimoto, V. Mateevitsi, L. Renambot, A. Johnson, and
J. Leigh. Omegalib: A multi-view application framework for hybrid reality
display environments. In Proc. IEEE VR, pp. 9–14, 2014.

[11] S. Frey, F. Sadlo, and T. Ertl. Balanced sampling and compression for
remote visualization. In ACM SIGGRAPH Asia, p. 1, 2015.

[12] F. Frieß, M. Landwehr, V. Bruder, S. Frey, and T. Ertl. Adaptive encoder
settings for interactive remote visualisation on high-resolution displays.
In Proc. IEEE LDAV, pp. 87–91, 2018.

[13] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3D
graphics. ACM Trans. Graph., p. 164, 2012.

[14] R. Herzog, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel. Render2mpeg:
A perception-based framework towards integrating rendering and video
compression. In Comput. Graph. Forum, pp. 183–192, 2008.

[15] G. Illahi, M. Siekkinen, and E. Masala. Foveated video streaming for
cloud gaming. In IEEE Int. Workshop on Multimedia Signal Proc., pp.
1–6, 2017.

[16] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni, and
R. Scopigno. Protected interactive 3d graphics via remote rendering. In
ACM Trans. Graph., pp. 695–703, 2004.

[17] M.-A. Kourtis, H. G. Koumaras, and F. Liberal. Reduced-reference video
quality assessment using a static video pattern. J. Electron. Imaging, p.
043011, 2016.

[18] M. Levoy. Volume rendering by adaptive refinement. Vis. Comput., pp.
2–7, 1990.

[19] T. Marrinan, S. Rizzi, J. A. Insley, L. Long, L. Renambot, and M. E. Papka.
Pxstream: Remote visualization for distributed rendering frameworks. In
Proc. IEEE LDAV, pp. 37–41, 2019.

[20] Microsoft. Desktop Duplication API. Online, last acces-
sed 27/08/2020, 2018. https://docs.microsoft.com/en-
us/windows/desktop/direct3ddxgi/desktop-dup-api.

[21] Microsoft. I/O Completion Ports. Online, last accessed 27/08/2020,
2018. https://docs.microsoft.com/en-us/windows/desktop/fileio/i-o-
completion-ports.

[22] K. Moreland, D. Lepage, D. Koller, and G. Humphreys. Remote rendering
for ultrascale data. In J. Phys. Conf. Ser., p. 012096, 2008.

[23] NVIDIA. NVIDIA Capture SDK. Online, last accessed 27/08/2020.
https://developer.nvidia.com/capture-sdk.

[24] NVIDIA. NVIDIA Quadro Sync. Online, last accessed 27/08/2020.
https://www.nvidia.com/en-us/design-visualization/solutions/quadro-
sync.

[25] NVIDIA. NVIDIA Video Codec SDK. Online, last accessed 27/08/2020.
https://developer.nvidia.com/nvidia-video-codec-sdk.

[26] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel. Sca-
lable remote rendering with depth and motion-flow augmented streaming.
In Comput. Graph. Forum, pp. 415–424, 2011.

[27] K. Ponto, K. Doerr, T. Wypych, J. Kooker, and F. Kuester. CGLXTouch:
A multi-user multi-touch approach for ultra-high-resolution collaborative

workspaces. Future Gener. Comput. Syst., pp. 649–656, 2011.
[28] L. Renambot, T. Marrinan, J. Aurisano, A. Nishimoto, V. Mateevitsi,

K. Bharadwaj, L. Long, A. Johnson, M. Brown, and J. Leigh. SAGE2:
A collaboration portal for scalable resolution displays. Future Gener.
Comput. Syst., pp. 296–305, 2016.

[29] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V. Vishwa-
nath, V. Chandrasekhar, N. Schwarz, A. Spale, C. Zhang, G. Goldman,
J. Leigh, and A. Johnson. SAGE: the Scalable Adaptive Graphics Envi-
ronment. Proc. WACE, pp. 2004–2009, 2004.

[30] Sanghoon Lee and A. C. Bovik. Fast algorithms for foveated video
processing. IEEE Trans. Circuits Syst. Video Technol., pp. 149–162, 2003.

[31] S. Shi and C.-H. Hsu. A survey of interactive remote rendering systems.
ACM Comput. Surv., p. 57, 2015.

[32] M. Stengel, S. Grogorick, M. Eisemann, and M. Magnor. Adaptive image-
space sampling for gaze-contingent real-time rendering. In Comput. Graph.
Forum, pp. 129–139, 2016.

[33] H. Strasburger, I. Rentschler, and M. Jüttner. Peripheral vision and pattern
recognition: A review. J. Vis., pp. 13–13, 2011.

[34] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller, J. Nils-
son, J. Munkberg, J. Hasselgren, M. Sugihara, P. Clarberg, et al. Coarse
pixel shading. In Proc. HPG, pp. 9–18, 2014.

[35] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Hevc-
compliant tile-based streaming of panoramic video for virtual reality
applications. In Proc. ACM Int. Conf. Multimed., p. 601–605, 2016.

Authorized licensed use limited to: University of Groningen. Downloaded on September 06,2021 at 08:31:26 UTC from IEEE Xplore. Restrictions apply.

