22,141 research outputs found

    Computational Methods and Results for Structured Multiscale Models of Tumor Invasion

    Full text link
    We present multiscale models of cancer tumor invasion with components at the molecular, cellular, and tissue levels. We provide biological justifications for the model components, present computational results from the model, and discuss the scientific-computing methodology used to solve the model equations. The models and methodology presented in this paper form the basis for developing and treating increasingly complex, mechanistic models of tumor invasion that will be more predictive and less phenomenological. Because many of the features of the cancer models, such as taxis, aging and growth, are seen in other biological systems, the models and methods discussed here also provide a template for handling a broader range of biological problems

    Long- and short-range correlations in the ab-initio no-core shell model

    Full text link
    In the framework of the ab-initio no-core shell model (NCSM), we describe the longitudinal-longitudinal distribution function, part of the inclusive (e,e') longitudinal response. In the two-body cluster approximation, we compute the effective operators consistent with the unitary transformation used to obtain the effective Hamiltonian. When short-range correlations are probed, the results display independence from the model space size and length scale. Long-range correlations are more difficult to model in the NCSM and they can be described only by increasing the model space or increasing the cluster size. In order to illustrate the model space independence for short-range observables, we present results for a large set of model spaces for 4He, and in 0-4hw model spaces for 12C.Comment: 4 pages, 4 figure

    Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus

    Get PDF
    Double-stranded RNA (dsRNA) has been isolated from Agaricus bisporus fruit bodies exhibiting a wide range of disease symptoms. The symptoms which occurred singularly or in combination included; bare cropping areas on commercial beds (primordia disruption), crop delay, premature veil opening, off- or brown-coloured mushrooms, sporophore malformations and loss of crop yield. All symptoms were associated with loss of yield and/or product quality. Collectively, these symptoms are described as mushroom virus X (MVX) disease. The dsRNA titre was much lower than that previously encountered with the La France viral disease of mushrooms and a modified cellulose CF11 protocol was used for their detection. A broad survey of cultivated mushrooms from the British industry identified dsRNA elements ranging between 640 bp and 20.2 kbp; the majority have not previously been described in A. bisporus. 26 dsRNA elements were identified with a maximum of 17, apparently non-encapsidated dsRNA elements, in any one sample. Three dsRNAs (16.2, 9.4 and 2.4 kbp) were routinely found in mushrooms asymptomatic for MVX. Previously, La France disease was effectively contained and controlled by minimising the on-farm production and spread of basidiospores. Our on-farm observations suggest that MVX could be spread by infected spores and/or mycelial fragments

    An approximate dynamic programming approach to food security of communities following hazards

    Get PDF
    Food security can be threatened by extreme natural hazard events for households of all social classes within a community. To address food security issues following a natural disaster, the recovery of several elements of the built environment within a community, including its building portfolio, must be considered. Building portfolio restoration is one of the most challenging elements of recovery owing to the complexity and dimensionality of the problem. This study introduces a stochastic scheduling algorithm for the identification of optimal building portfolio recovery strategies. The proposed approach provides a computationally tractable formulation to manage multi-state, large-scale infrastructure systems. A testbed community modeled after Gilroy, California, is used to illustrate how the proposed approach can be implemented efficiently and accurately to find the near-optimal decisions related to building recovery following a severe earthquake.Comment: As opposed to the preemptive scheduling problem, which was addressed in multiple works by us, we deal with a non-preemptive stochastic scheduling problem in this work. Submitted to 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 Seoul, South Korea, May 26-30, 201

    Sea Beam Survey of an Active Strike-Slip Fault: The San Clemente Fault in the California Continental Borderland

    Get PDF
    The San Clemente fault, located in the California Continental Borderland, is an active, northwest trending, right-lateral, wrench fault. Sea Beam data are used to map the major tectonic landforms associated with active submarine faulting in detail unavailable using conventional echo-sounding or seismic reflection data. In the area between North San Clemente Basin and Fortymile Bank, the major late Cenozoic faults are delineated by alignments of numerous tectonic landforms, including scarps, linear trenches, benches, and sags. Character and spatial patterns of these landforms are consistent with dextral wrench faulting, although vertical offsets may be substantial locally. The main trace of the San Clemente fault cuts a straight path directly across the rugged topography of the region, evidence of a steeply dipping fault surface. Basins or sags located at each right step in the en echelon pattern of faults are manifestations of pull-apart basin development in a right-slip fault zone. Seismic reflection profiles show offset reflectors and a graben in late Quaternary turbidites of the Navy Fan, where the fault zone follows a more northerly trend. Modern tectonic activity along the San Clemente fault zone is demonstrated by numerous earthquakes with epicenters located along the fault\u27s trend. The average strike of the San Clemente fault is parallel to the predicted Pacific-North American relative plate motion vector at this location. Therefore we conclude that the San Clemente fault zone is a part of the broad Pacific-North American transform plate boundary and that the southern California region may be considered as a broad shear zone

    Inversion improves the recognition of facial expression in thatcherized images

    Get PDF
    The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressions. In contrast, local inversion of facial features in upright thatcherized faces resulted in a much larger reduction in the recognition of facial expressions. Paradoxically, inversion of thatcherized faces caused a relative increase in the recognition of facial expressions. Together, these results suggest that different processes explain the effects of inversion on the recognition of facial expressions and on the perception of the Thatcher illusion. The grotesque perception of thatcherized images is based on a more orientation-sensitive representation of the face. In contrast, the recognition of facial expression is dependent on a more orientation-insensitive representation. A similar pattern of results was evident when only the mouth or eye region was visible. These findings demonstrate that a key component of the Thatcher illusion is to be found in orientation-specific encoding of the features of the face

    Alamblak Alveopalatals - Dead Portmanteaus

    Get PDF

    From non-Hermitian effective operators to large-scale no-core shell model calculations for light nuclei

    Get PDF
    No-core shell model (NCSM) calculations using ab initio effective interactions are very successful in reproducing experimental nuclear spectra. The main theoretical approach is the use of effective operators, which include correlations left out by the truncation of the model space to a numerically tractable size. We review recent applications of the effective operator approach, within a NCSM framework, to the renormalization of the nucleon-nucleon interaction, as well as scalar and tensor operators.Comment: To be submited to J. Phys. A, special issue on "The Physics of Non-Hermitian Operators
    corecore