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ABSTRACT:

Food security can be threatened by extreme natural hazard events for households of all social classes
within a community. To address food security issues following a natural disaster, the recovery of several
elements of the built environment within a community, including its building portfolio, must be consid-
ered. Building portfolio restoration is one of the most challenging elements of recovery owing to the
complexity and dimensionality of the problem. This study introduces a stochastic scheduling algorithm
for the identification of optimal building portfolio recovery strategies. The proposed approach provides
a computationally tractable formulation to manage multi-state, large-scale infrastructure systems. A
testbed community modeled after Gilroy, California, is used to illustrate how the proposed approach can
be implemented efficiently and accurately to find the near-optimal decisions related to building recovery
following a severe earthquake.

One of the principal objectives of the United etary needs and food preferences for an active and

Nations (UN) Sustainable Development Goals is
achieving food security. The Food and Agriculture
Organization (FAO) describes food security as: "a
situation that exists when all people, at all times,
have physical, social and economic access to suf-

ficient, safe and nutritious food that meets their di-

healthy life" (FAO (2001)). Securing an adequate
food supply to all community inhabitants requires
a food distribution system that is resilient to natural
and man-made hazards. The growth of population
in hazard-prone regions and climate change pose
numerous challenges to achieving a resilient food
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system around the world. The resiliency concept
applied to food distribution systems can be eval-
uated with respect to two different time-frames,
namely in "normal" times (i.e., prior to disasters)
and in the aftermath of hazards. Several studies
have investigated different approaches to enhance
the resilience of agri-food systems (Seekell et al.
(2017)). These studies have focused on resilience
in terms of biophysical capacity to increase food
production, diversity of modern domestic food
production, and the role played by social status
and income in the impact of food deficits. To miti-
gate food security issues, the United States Depart-
ment of Agriculture (USDA) Food and Nutrition
Service (FNS) supplies 15 domestic food and nu-
trition assistance programs. The three largest are
the Supplemental Nutrition Assistance Program
(SNAP - formerly the Food Stamp Program), the
National School Lunch Program, and the Special
Supplemental Nutrition Program for Women, In-
fants, and Children (WIC) (Oliveira (2017)). How-
ever, household food security following extreme
natural hazard events is also contingent on inter-
dependent critical infrastructure systems, such as
transportation, energy, water, household units, and
retailer availability.

This study focuses on the connection between
failures in food distribution and food retail in-
frastructure and disruption in civil infrastructure
and structures. Household food security issues
are considerably worsened following natural dis-
asters. For example, Hurricanes Rita, Wilma, and
Katrina, which occurred in 2005, caused disaster-
related food programs to serve 2.4 million house-
holds and distributed $928 million in benefits to
households (Research and Center (2017)). Three
dimensions of food security - accessibility, avail-
ability, and affordability - are particularly relevant
for the nexus between infrastructure and household
food security. Affordability captures the ability of
households to buy food from food retailers, and is
a function of household income, assets, credit, and
perhaps even participation in food assistance pro-
grams. Accessibility is concerned with the house-
holds’ physical access to food retail outlets. Be-
cause at least one functional route must be avail-

Seoul, South Korea, May 26-30, 2019

able between a household unit and a functioning
food retailer, transportation networks are a major
factor in accessibility. Availability is concerned
with the functionality of the food distribution in-
frastructure, beginning with wholesalers, extend-
ing to retailers, and ultimately ending with the
household as the primary consumer. The function-
ality of food retailers and household units depends
not only on the functionality of their facilities but
also the availability of electricity and water. There-
fore, the electrical power network (EPN), water
network (WN), and the buildings housing retailers
and household units must be considered simulta-
neously to address availability.

As is evident from the preceding discussion, food
security relies on a complex supply-chain system.
If such a system is disrupted, community resilience
and the food security will be threatened (Paci-
Green and Berardi (2015)). In this paper, we fo-
cus only on household unit structures, which forms
the largest entity in community restoration. In
this paper, we focus on household unit buildings,
which usually form the largest element of the built
environment in community restoration. A liter-
ature review (Lin and Wang (2017)) shows that
the recovery of building portfolios has been stud-
ied far less than the recovery of other infrastruc-
ture systems. Building portfolio restoration is an
essential element of availability and plays a ma-
jor role towards addressing food security issues.
Effective emergency logistics demand a compre-
hensive decision-making framework that addresses
and supports policymakers’ preferences by pro-
viding efficient recovery plans. In this study,
we employ Markov decision processes (MDPs)
along with an approximate dynamic programming
(ADP) technique to provide a practical framework
for representation and solution of stochastic large-
scale decision-making problems. The scale and
complexity of building portfolio restoration is cap-
tured by the proposed simulation-based represen-
tation and solution of the MDP. The near-optimal
solutions are illustrated for the building portfolio
of a testbed community modeled after Gilroy, Cal-
ifornia, United States.
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1. TESTBED CASE STUDY

As an illustration, this study considers the building
portfolio of Gilroy, California, USA. The City of
Gilroy is a moderately sized growing city in south-
ern Santa Clara County, California, with a popula-
tion of 48,821 at the time of the 2010 census. The
study area is divided into 36 rectangular regions
organized as a grid to define the properties of the
community with an area of 42 km? and a popula-
tion of 47,905. Household units are growing at a
faster pace in Gilroy than in Santa Clara County
and the State of California (Harnish (2014)). The
average number of people per household in Gilroy
in 2010 was 3.4, greater than the state and county
average. Approximately 95% of Gilroy’s housing
units are occupied. A heat map of household units
in the grid is shown in Figure 1. Age distribution
of Gilroy is tabulated in Table 1.

Figure 1: Housing units over the defined grids.

Table 1: Age distribution of Gilroy (Harnish (2014)).

Age Group Percent
Children (0-17 years) 30.60
Adults (18-64 years) 61

Senior Citizen (65+ years) | 8.40

2. SEISMIC HAZARD AND DAMAGE AS-
SESSMENT

The seismic hazard is a dominant hazard of Cal-

ifornia. Hence, we consider a seismic event of

moment magnitude M,, = 6.9 that occurs at one

of the closest points on the San Andreas Fault

to downtown Gilroy with an epicentral distance

Seoul, South Korea, May 26-30, 2019

of approximately 12 km. We used the Abraham-
son et al. (2013) ground motion prediction equa-
tion (GMPE) to evaluate the Intensity Measures
(IM) and associated uncertainties, including the
intra-event (within event) and inter-event (event-
to-event) uncertainties, at the sites of each of the
14,702 buildings in Gilroy. We assessed the dam-
age to household units and food retailers with the
seismic fragility curves presented in HAZUS-MH
(FEMA (2003)). We considered repair vehicles,
crews, and tools as available resource units (RUs)
to restore the buildings following the hazard. One
RU is required to repair each damaged building
(Masoomi (2018)). We adopted the synthesized
restoration time from HAZUS-MH.

3. MARKOV DECISION
FRAMEWORK

We provide a brief description of MDPs; addi-
tional details of MDPs are available elsewhere
(Puterman (2014)). A MDP is defined by the
five-tuple (X,A,P,R,v), where X denotes the state
space, A denotes the action space, P(y|x,a) is the
probability of transitioning from state x € X to
state y € Y when action a is taken, , R(x,a) is the
reward obtained when action a is taken in state
x € X, and 7y is the discount factor. A policy
7w : X — A is a mapping from states to actions,
and IT be the set of policies (7). The objective is
then to find the optimal policy, denoted by 7*, that
maximizes the total reward (or minimizes the total
cost) over the time horizon, i.e.,

PROCESS

m* = arg sup V" (x) (1)
nell

where

VF(x):=E | Y Y'R(x;,m(x;))|x0 = x (2)
1=0

V7 (x) is called the value function for a fixed pol-
icy w, and 0 < y < 1 is the discount factor (Put-
erman (2014)). The optimal value function for a
given state x € X is connoted as V* (x) : X — R
given by

VZ (x) := sup V*(x) (3)

nell
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Bellman’s optimality principle (Bertsekas
(2005)) is useful for defining Q-value function.
Q-value function plays a pivotal role in the
description of the rollout algorithm. Bellman’s
optimality principle states that V7 (x) satisfies

VF (x) = sup R(X7a)+YZP(y|X»a)V”*(y)]

acA(x) yex
4)

The Q-value function associated with the optimal
policy 7* is defined as

0" (x,a) :==R(x,a)+7 Y P(ylx,a)V™ (y) (5)
yeX

which is the inner-term on the R.H.S. in Eq. (4).

Theoretically, 7* can be computed with lin-
ear programming or dynamic programming (DP).
However, exact methods are not feasible for real-
world problems that have large state and ac-
tion spaces, like the community-level optimization
problem considered herein, owing to the curse of
dimensionality; thus, an approximation technique
is essential to obtain the solution. In the realm of
approximate dynamic programming (ADP) tech-
niques, a model-based, direct simulation approach
for policy evaluation is used (Sarkale et al. (2018)).
This approach is called “rollout.” Briefly, an esti-
mate Q% (x,a) of the Q-value function is calculated
by Monte Carlo simulations (MSC) in the rollout
algorithm as follows: we first simulate Ny;c num-
ber of trajectories, where each trajectory is gen-
erated using the policy 7 (called the base policy),
has length K, and starts from the pair (x,a); then,
Q™ (x,a) is the average of the sample functions
along these trajectories:

O () = 5 K (RO ,0) + K RO, 711

(6)
For each trajectory ip, we fix the first state-action
pair to (x,a); the next state x;, | is calculated when
the current action a in state x is completed. There-
after, we choose actions using the base policy. A
more complete description of the rollout algorithm
can be found in (Bertsekas (2005); Nozhati et al.
(2019)).
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4. BUILDING PORTFOLIO RECOVERY
Each household unit and retailer building remains
undamaged or exhibits one of the damage states
(i.e., Minor, Moderate, Major, and Collapse) based
on the level of intensity measure and the seismic
fragility curves. There is a limited number of RUs
(defined earlier) available to the decision maker for
the repair of the buildings in the community. In
this study, we also limit the number of RUs for
each urban grid so that the number of available
RUs for each grid RU, is 20 percent of the number
of damaged buildings in each region of the grid.
Therefore, the number of RUs varies over the com-
munity in proportion to the density of the damaged
buildings.

Let x; be the state of the damaged structures of
the building portfolio at time ¢; x; is a vector, where
each element represents the damage state of each
building in the portfolio based on the level of inten-
sity measure and the seismic fragility curves. Let
a; denote the repair action to be carried out on the
damaged structures in the g’ region of the grid at
time ¢; each element of af 18 either zero or a one,
where zero means do not repair and one means
carry out repair. Note that the sum of elements of
af is equal to RU,. The repair action for the entire
community at time ¢, a;, is the stack of the repair
action af. The assignment of RUs to damaged lo-
cations is non — preemptive in the sense that the
decision maker cannot preempt the assigned RUs
from completing their work and reassign them to
different locations at every decision epoch ¢. This
type of scheduling is more suitable when the de-
cision maker deals with non-central stakeholders
and private owners, which is the case for a typical
building portfolio. We wish to plan decisions op-
timally so that a maximum number of inhabitants
have safe household unit structures per unit of time
(day in our case). Therefore, the reward function
embeds two objectives as follows:

r

(7)

R(xl‘valaxt-i-]) =

trep
where r is the number of people benefited from
household units after the completion of a;, and t,.,
is the total repair time to reach x;4 | from any initial
state xp. Note that the reward function is stochastic
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because the outcome of the repair action is stochas-
tic. In this study, we set the discount factor to
be 0.99, implying that the decision maker is “far-
sighted” in the consideration of the future rewards.

We simulated Nyc number of trajectories to
reach a low (0.1 in this study) dispersion in Eq. (6).
As Eq. (6) shows, we addressed the mean-based
optimization that is suited to risk-neutral decision-
makers. However, this approach can easily address
different risk aversion behaviors. Figure 2 shows
the total number of people with inhabitable struc-
tures (undamaged or repaired) over the commu-
nity. We also computed the different numbers of
children, adults, and senior citizens that have safe
buildings over the recovery. Different age groups
have different levels of vulnerability to food in-
security; for example, children are a vulnerable
group and must be paid more attention during the
recovery process.
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Figure 2: Different numbers of people based on age

with inhabitable structures.

Figure 3 depicts the spatio-temporal evolu-
tion of the community for people with inhabit-
able structurally-safe household units. This fig-
ure shows that for urban grids with a high den-
sity of damaged structures, complete recovery is
prolonged despite availability of additional RUs.
The spatio-temporal analysis of the community is
informative for policy makers whereby they can
identify the vulnerable areas of the community
across time.

5. CONCLUSION AND FUTURE WORK
The building portfolio restoration is one of the
most challenging ingredients to address food se-
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Figure 3: Number of people with inhabitable houses a)
following the earthquake b) after 100 days c) after 600
days.

curity issues in the aftermath of disasters. Our
stochastic dynamic optimization approach, based
on the method of rollout, successfully plans a near-
optimal building portfolio recovery following a
hazard. Our approach shows how to overcome the
curse of dimensionality in optimizing large-scale
building portfolio recovery post-diaster. For future
work, we consider several aspects of a commu-
nity from infrastructure systems to social systems
along with their interdependencies. We will also
explore how to fuse meta-heuristics to our solution
to supervise the stochastic search that determines
the most promising actions (Nozhati et al. (2018)).
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