196 research outputs found

    Sea Beam Survey of an Active Strike-Slip Fault: The San Clemente Fault in the California Continental Borderland

    Get PDF
    The San Clemente fault, located in the California Continental Borderland, is an active, northwest trending, right-lateral, wrench fault. Sea Beam data are used to map the major tectonic landforms associated with active submarine faulting in detail unavailable using conventional echo-sounding or seismic reflection data. In the area between North San Clemente Basin and Fortymile Bank, the major late Cenozoic faults are delineated by alignments of numerous tectonic landforms, including scarps, linear trenches, benches, and sags. Character and spatial patterns of these landforms are consistent with dextral wrench faulting, although vertical offsets may be substantial locally. The main trace of the San Clemente fault cuts a straight path directly across the rugged topography of the region, evidence of a steeply dipping fault surface. Basins or sags located at each right step in the en echelon pattern of faults are manifestations of pull-apart basin development in a right-slip fault zone. Seismic reflection profiles show offset reflectors and a graben in late Quaternary turbidites of the Navy Fan, where the fault zone follows a more northerly trend. Modern tectonic activity along the San Clemente fault zone is demonstrated by numerous earthquakes with epicenters located along the fault\u27s trend. The average strike of the San Clemente fault is parallel to the predicted Pacific-North American relative plate motion vector at this location. Therefore we conclude that the San Clemente fault zone is a part of the broad Pacific-North American transform plate boundary and that the southern California region may be considered as a broad shear zone

    Sea Beam survey of an active strike‐slip fault: The San Clemente fault in the California Continental Borderland

    Get PDF
    The San Clemente fault, located in the California Continental Borderland, is an active, northwest trending, right‐lateral, wrench fault. Sea Beam data are used to map the major tectonic landforms associated with active submarine faulting in detail unavailable using conventional echo‐sounding or seismic reflection data. In the area between North San Clemente Basin and Fortymile Bank, the major late Cenozoic faults are delineated by alignments of numerous tectonic landforms, including scarps, linear trenches, benches, and sags. Character and spatial patterns of these landforms are consistent with dextral wrench faulting, although vertical offsets may be substantial locally. The main trace of the San Clemente fault cuts a straight path directly across the rugged topography of the region, evidence of a steeply dipping fault surface. Basins or sags located at each right step in the en echelon pattern of faults are manifestations of pull‐apart basin development in a right‐slip fault zone. Seismic reflection profiles show offset reflectors and a graben in late Quaternary turbidites of the Navy Fan, where the fault zone follows a more northerly trend. Modern tectonic activity along the San Clemente fault zone is demonstrated by numerous earthquakes with epicenters located along the fault\u27s trend. The average strike of the San Clemente fault is parallel to the predicted Pacific‐North American relative plate motion vector at this location. Therefore we conclude that the San Clemente fault zone is a part of the broad Pacific‐North American transform plate boundary and that the southern California region may be considered as a broad shear zone

    Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production

    Get PDF
    Prolific natural hydrcarbon seepage occurs offshore of Coal Oil Point in the Santa Barbara Channel, California. Within the water column above submarine vents, plumes of hydrocarbon gas bubbles act as acoustic scattering targets. Using 3.5 kHz sonar data, seep distribution offshore of Coal Oil Point was mapped for August 1996, July 1995, and July 1973. Comparison of the seep distributions over time reveals more than 50% decrease in the areal extent of seepage, accompanied by declines in seep emission volume, in a 13 km2 area above a production oil reservoir. Declines in reservoir pressure and depletion of seep hydrocarbon sources associated with oil production are the mechanisms inferred to explain the declines in seep and emission volume

    What lies beneath? Interdisciplinary outcomes of the ANDRILL Coulman High Project site surveys on the Ross Ice Shelf

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 84-89, doi:10.5670/oceanog.2012.79.Extensive field operations were conducted on the northwestern Ross Ice Shelf in Antarctica from November 2010 through January 2011. A significant amount of equipment, supplies, and people safely traversed from McMurdo Station to establish a series of combined United States–New Zealand field camps at locations northeast of Ross Island. The ANDRILL (ANtarctic geological DRILLing) hot water drill system was used to melt multiple access holes through the ice shelf at each site to deploy a variety of sediment coring tools, cameras, and oceanographic instruments, as well as a remotely operated vehicle to characterize the ice shelf and sub-ice environment. These studies will contribute to future proposed geological drilling as part of the ANDRILL Coulman High Project.This work is funded by US NSF-OPP Grant ANT-0838914 and by the NZ Foundation for Research, Science and Technology

    Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene

    Get PDF
    Reconstructions of Antarctic paleotopography for the late Eocene suggest that glacial erosion and thermal subsidence have lowered West Antarctic elevations considerably since then, with Antarctic land area having decreased ~20%. A new climate-ice sheet model based on these reconstructions shows that the West Antarctic Ice Sheet first formed at the Eocene-Oligocene transition (33.8–33.5 Ma, E-O) in concert with the continental-scale expansion of the East Antarctica Ice Sheet and that the total volume of East and West Antarctic ice (33.4–35.9 × 106 km3) was >1.4 times greater than previously assumed. This larger modeled ice volume is consistent with a modest cooling of 1–2°C in the deep ocean during the E-O transition, lower than other estimates of ~3°C cooling, and suggests the possibility of substantial ice in the Antarctic interior before the Eocene-Oligocene boundary
    corecore