6 research outputs found

    Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes

    Get PDF
    New U–Pb perovskite ages reveal that diamondiferous ultramafic lamprophyre magmas erupted through the Archean crust of northern Labrador and Quebec (eastern Canada) between ca. 610 and 565 Ma, a period of strong rifting activity throughout contiguous Laurentia and Baltica. The observed Torngat carbonate-rich aillikite/carbonatite and carbonate-poor mela-aillikite dyke varieties show a large spread in Sr–Nd–Hf–Pb isotope ratios with pronounced correlations between isotope systems. An isotopically depleted component is identified solely within aillikites (87Sr/86Sri = 0.70323–0.70377; εNdi = +1.2–+1.8; εHfi = +1.4–+3.5; 206Pb/204Pbi = 18.2–18.5), whereas some aillikites and all mela-aillikites range to more enriched isotope signatures (87Sr/86Sri = 0.70388–0.70523; εNdi = −0.5 to −3.9; εHfi = −0.6 to −6.0; 206Pb/204Pbi = 17.8–18.2). These contrasting isotopic characteristics of aillikites/carbonatites and mela-aillikites, along with subtle differences in their modal carbonate, SiO2, Al2O3, Na2O, Cs–Rb, and Zr–Hf contents, are consistent with two distinctive metasomatic assemblages of different age in the mantle magma source region.Integration of petrologic, geochemical, and isotopic information leads us to propose that the isotopically enriched component originated from a reduced phlogopite-richterite-Ti-oxide dominated source assemblage that is reminiscent of MARID suite xenoliths. In contrast, the isotopically depleted component was derived from a more oxidized phlogopite-carbonate dominated source assemblage. We argue that low-degree CO2-rich potassic silicate melts from the convective upper mantle were preferentially channelled into an older, pre-existing MARID-type vein network at the base of the North Atlantic craton lithosphere, where they froze to form new phlogopite-carbonate dominated veins. Continued stretching and thinning of the cratonic lithosphere during the Late Neoproterozoic remobilized the carbonate-rich vein material and induced volatile-fluxed fusion of the MARID-type veins and the cold peridotite substrate. Isotopic modelling suggests that only 5–12% trace element contribution from such geochemically extreme MARID-type material is required to produce the observed compositional shift from the isotopically most depleted aillikites/carbonatites towards enriched mela-aillikites. We conclude that cold cratonic mantle lithosphere can host several generations of contrasting vein assemblages, and that each may have formed during past tectonic and magmatic events under distinctively different physicochemical conditions. Although cratonic MARID-type and carbonate-bearing veins in peridotite can be the respective sources for lamproite and carbonatite magmas when present as the sole metasome, their concomitant fusion in a complex source region may give rise to a whole new variety of deep volatile-rich magmas and we suggest that orangeites (formerly Group 2 kimberlites), kamafugites, and certain types of ultramafic lamprophyre are formed in this manner

    Electrophilic Nitro-fatty Acids Activate NRF2 by a KEAP1 Cysteine 151-independent Mechanism*

    No full text
    Nitro-fatty acids (NO2-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO2−)-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO2) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO2-reactive Cys residues in Keap1 were Cys38, Cys226, Cys257, Cys273, Cys288, and Cys489. Of these, Cys273 and Cys288 accounted for ∼50% of OA-NO2 reactions in a cellular milieu. Notably, Cys151 was among the least OA-NO2-reactive of the Keap1 Cys residues, with mutation of Cys151 having no effect on net OA-NO2 reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO2 enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO2 can therefore be categorized as a Cys151-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes

    Smart Reform is Possible: States Reducing Incarceration Rates and Costs While Protecting Communities

    No full text
    corecore