142 research outputs found

    Long-term capacity for organic-substrate removal by bacterial films

    Get PDF
    When wastewater is discharged to small streams, the effluent quality normally obtained from a sewage treatment plant is often not good enough to prevent serious water-quality deterioration. Hence, enhanced removal of organic pollutants is required. Efficient and economic removal of organics to very low concentrations is best achieved by biofilm processes, in which bacteria are attached to a fixed media and remove the organic compounds from the wastewater flowing past. Laboratory-scale reactors were utilized to evaluate the ability of biofilms to remove low levels of organic contaminants in water during extended operation. Nonsteady-state operation, in which trace concentrations of organic substrate were treated with a biofilm previously grown on a relatively high concentration feed, demonstrated that a slowly decaying biofilm was able to bring about high efficiency removal of the trace compound for extended periods, up to 7 months in this study. A kinetic model to describe the transient growth and decay of the biofilm was developed, and it predicted the growth and steady-state phases of the biofilm when input parameters were determined independently. The observed slow decay rate of the biofilm prolonged the usefulness of the nonsteady­state biofilm and was explained by adaptation to oligotrophic (low concentration) conditions and the growth of nitrifying bacteria which produced supplemental organic substrate to sustain the organic-utilizing bacteria. The results of this study demonstrated that nonsteady-state­biofilm processes can sustainably achieve organic concentrations much lower than conventional wastewater treatment.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Role of streambed biofilms in the removal of biodegradable contaminants from shallow streams

    Get PDF
    Biological activity in shallow streams is dominated by biofilms which are attached to the surface of the streambed. Although biofilm kinetic models are well developed and are successfully applied to biological treatment process, they cannot be applied directly to predict water quality in shallow streams, because the area and mass-transport aspects of streambed biofilms are complicated and not defined. Therefore, the main purpose of this study was to develop area and mass-transport functions for cobble-and gravel-lined streambeds. An artificial stream was used to grow biofilms and conduct kinetic experiments on the biofilm utilization of an easily degraded sugar. Media size (i.e., cobble or gravel) and flow velocity were varied over a wide range of values typical to shallow streams. Water velocity had short-term and long-term effects on the rate of contaminant removal. The short-term effects were related to increased mass-transport kinetics for higher flow velocities, while the long-term effects also included increased surface colonization by biofilm. The cobble streambed was more sensitive to short-term changes in water velocity than was the gravel bed, and it gave faster removal kinetics. Equations to predict the mass transfer coefficients were appropriate for more than one biofilm community, as long as the same medium size was used. The simulations from the water quality models containing the biofilm reaction term were markedly different from the simulations from traditional water-quality models that use only suspended organism kinetics.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Microbial attachment properties in expanded-bed, activated carbon anaerobic filters

    Get PDF
    A completely mixed, expanded-bed, anaerobic granular activated carbon filter was operated on synthetic wastewaters in which acetate was the only organic carbon source. Steady-state performance was achieved for two influent acetate concentrations: namely, 800 and 1,600 mg/L. Steady-state removal efficiencies in chemical oxygen demand, dissolved organic carbon, and acetate exceeding 96, 97, and 98 percent were obtained, respectively. A steady-state biofilm kinetic model was employed for analyzing the two sets of "steady-state" data. The modeling effort was successful in describing trends and effects; however, insufficient data were available to properly calibrate the model and obtain reliable values for the parametric constants.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Capturing the Lost Phosphorus

    Get PDF
    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH4, H2, or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins

    Medical bioremediation of age-related diseases

    Get PDF
    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods

    Enhancing anaerobic digestion of food waste through Biochemical Methane Potential 1 Assays at different substrate: inoculum ratios

    Get PDF
    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0 g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH4-COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30 days and maximum methane productions of 370, 910, and 1950 mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield

    Total Value of Phosphorus Recovery

    Get PDF
    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies

    A novel biotechnology based on periphytic biofilms with N-acyl-homoserine-lactones stimulation and lanthanum loading for phosphorus recovery

    Get PDF
    This study presents an approach for developing periphytic biofilm with N-acyl-homoserine-lactones (AHLs) stimulation and lanthanum (La, a rare earth element) loading, to achieve highly efficient and stable phosphorus (P) recovery from wastewater. AHLs stimulated biofilm growth and formation, also improved stable P entrapment by enhancing extracellular polymeric substance (EPS) production and optimizing P-entrapment bacterial communities. Periphytic biofilms loading La is based on ligand exchanges, and La loading achieved initial rapid P entrapment by surface adsorption. The combination of AHLs stimulation and La loading achieved 99.0% P entrapment. Interestingly, the enhanced EPS production stimulated by AHLs protected biofilms against La. Moreover, a method for P and La separately recovery from biofilms was developed, achieving 89-96% of P and 88-93% of La recovery. This study offers a promising biotechnology to reuse La from La-rich wastewater and recover P by biofilm doped with La, which results in a win-win situation for resource sustainability

    Global diversity and biogeography of bacterial communities in wastewater treatment plants

    Get PDF
    Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes
    • …
    corecore