102 research outputs found

    Regional Economic Implications of Water Allocation and Reliability

    Get PDF
    The understanding of how allocation decisions can maximise the economic returns to the community from water for irrigation has received little attention, but is a significant issue for regional councils, those interested in water allocation policy development, and for irrigated farmers. There is a tradeoff between the amount of irrigated area and the reliability with which it can be undertaken. Overseas studies have generated a curve with optimum levels of allocation which maximise the economic return to the community from the resource. The study on which this paper is based used a single case study to model the individual and regional economic outcomes for four scenarios of water allocation, using daily time step simulation models of the hydrological, irrigation, farm and financial systems over the 1973 – 2000 period. The results show that there is an increasing return to the region as the allocation from the resource increases, at the expense of lower returns to existing users.Irrigation, reliability, regional economic impacts, Agribusiness, Agricultural and Food Policy, Agricultural Finance, Community/Rural/Urban Development, Environmental Economics and Policy, Farm Management, Financial Economics, Institutional and Behavioral Economics, Land Economics/Use, Resource /Energy Economics and Policy,

    Comprehensive framework for human health risk assessment of nanopesticides

    Get PDF
    Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier–active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides

    Comprehensive framework for human health risk assessment of nanopesticides

    Get PDF
    Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier–active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides

    Viscous hydrophilic injection matrices for serial crystallography

    Get PDF
    Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro­gels as viscous injection matrices is described, namely sodium carb­oxy­methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford very stable adjustable streams suitable for time-resolved measurements

    A cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year olds: 'Activity Knowledge Circuit'

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality worldwide. Risk factors associated with cardiovascular disease have been shown to track from childhood through to adulthood. Previous school-based physical activity interventions have demonstrated modest improvements to cardiovascular disease risk factors by implementing extra-curricular activities or improving current physical education curriculum. Few have attempted to increase physical activity in class-room taught curriculum subjects. This study will outline a school-based cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year old children. Method/Design: A South Wales Valley school of low socio-economic status has been selected to take part. Participants from year eight (12-13 years) are to be assigned to an intervention group, with maturation-matched participants from years seven (11-12 years) and nine (13-14 years) assigned to a control group. A cross-curricular physical activity intervention will be implemented to increase activity by two hours a week for 18 weeks. Participants will briskly walk 3200 m twice weekly during curriculum lessons (60 minutes duration). With the exception of physical education, all curriculum subjects will participate, with each subject delivering four intervention lessons. The intervention will be performed outdoors and on school premises. An indoor course of equal distance will be used during adverse weather conditions. Cardiovascular disease risk factors will be measured pre- and post-intervention for intervention and control groups. These will take place during physical education lessons and will include measures of stature, mass, waist, hip, and neck circumferences, together with skinfold measure's taken at four sites. Blood pressure will be measured, and fitness status assessed via the 20 m multi-stage fitness test. Questionnaires will be used to determine activity behaviour (physical activity questionnaire for adolescence), diet (seven day food diary) and maturation status. Fasting blood variables will include total cholesterol, lowdensity lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides, insulin, glucose, high-sensitivity C-reactive protein, interleukin-6, adiponectin, and fibrinogen. Motivational variables and psychological well-being will be assessed by questionnaire. Discussion: Our study may prove to be a cost effective strategy to increase school time physical activity to combat cardiovascular disease risk factors in children.</p

    Regional Economic Implications of Water Allocation and Reliability

    No full text
    The understanding of how allocation decisions can maximise the economic returns to the community from water for irrigation has received little attention, but is a significant issue for regional councils, those interested in water allocation policy development, and for irrigated farmers. There is a tradeoff between the amount of irrigated area and the reliability with which it can be undertaken. Overseas studies have generated a curve with optimum levels of allocation which maximise the economic return to the community from the resource. The study on which this paper is based used a single case study to model the individual and regional economic outcomes for four scenarios of water allocation, using daily time step simulation models of the hydrological, irrigation, farm and financial systems over the 1973 – 2000 period. The results show that there is an increasing return to the region as the allocation from the resource increases, at the expense of lower returns to existing users
    • 

    corecore