11 research outputs found

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Dynamic assessment precursors: Soviet ideology, and Vygotsky

    Full text link

    Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle.

    No full text
    The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans

    The status of GEO600

    Get PDF
    GEO600, the German/British gravitational wave detector currently being built in northern Germany, used advanced optical technologies to obtain a sensitivity comparable with the other, bigger detectors currently being built. The installation of the ultra-high-vacuum system has almost been completed and the Mode Cleaners are operational

    Biosynthesis, transport, and modification of lipid A

    No full text
    Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli

    The GEO600 gravitational wave detector

    No full text
    The GEO600 Gravitational Wave Detector is currently under construction near Hannover / Germany as a collaboration of scientists from Germany and Great Britain. Although only intermediate in size, the GEO600 detector has a good chance to achieve a sensitivity comparable to the first version of the large baseline detectors. This is due to the fact that GEO600 uses signal recycling, an advanced optical technique to shape the coupling of the optical read-out noise into the detector strain sensitivity, and a low-loss suspension system to reduce thermal noise. This talk will describe the different subsystems of the GEO600 and the current status of the construction will be outlined
    corecore