36 research outputs found

    ISTH guidelines for antithrombotic treatment in COVID-19

    Get PDF
    Antithrombotic agents reduce risk of thromboembolism in severely ill patients. Patients with coronavirus disease 2019 (COVID-19) may realize additional benefits from heparins. Optimal dosing and timing of these treatments and benefits of other antithrombotic agents remain unclear. In October 2021, ISTH assembled an international panel of content experts, patient representatives, and a methodologist to develop recommendations on anticoagulants and antiplatelet agents for patients with COVID-19 in different clinical settings. We used the American College of Cardiology Foundation/American Heart Association methodology to assess level of evidence (LOE) and class of recommendation (COR). Only recommendations with LOE A or B were included. Panelists agreed on 12 recommendations: three for non-hospitalized, five for non-critically ill hospitalized, three for critically ill hospitalized, and one for post-discharge patients. Two recommendations were based on high-quality evidence, the remainder on moderate-quality evidence. Among non-critically ill patients hospitalized for COVID-19, the panel gave a strong recommendation (a) for use of prophylactic dose of low molecular weight heparin or unfractionated heparin (LMWH/UFH) (COR 1); (b) for select patients in this group, use of therapeutic dose LMWH/UFH in preference to prophylactic dose (COR 1); but (c) against the addition of an antiplatelet agent (COR 3). Weak recommendations favored (a) sulodexide in non-hospitalized patients, (b) adding an antiplatelet agent to prophylactic LMWH/UFH in select critically ill, and (c) prophylactic rivaroxaban for select patients after discharge (all COR 2b). Recommendations in this guideline are based on high-/moderate-quality evidence available through March 2022. Focused updates will incorporate future evidence supporting changes to these recommendations

    The SDF-1α/CXCR4 Axis is Required for Proliferation and Maturation of Human Fetal Pancreatic Endocrine Progenitor Cells

    Get PDF
    The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3), a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs) derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1) was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets

    In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs

    Get PDF
    Comment in Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016] In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016] US oncologists call for government regulation to curb drug price rises. [BMJ. 2015

    Inertial Navigation Systems

    No full text

    Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mic

    No full text
    We hypothesized that megakaryocyte (MK) phosphoinositide signaling mediated by phosphatidylinositol transfer proteins (PITPs) contributes to hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation. Conditional knockout mice lacking PITPs specifically in MKs and platelets (pitpα-/- and pitpα-/-/β-/-) bone marrow (BM) manifested decreased numbers of HSCs, MK-erythrocyte progenitors, and cycling HPCs. Further, pitpα-/-/β-/- BM had significantly reduced engrafting capability in competitive transplantation and limiting dilution analysis. Conditioned media (CM) from cultured pitpα-/- and pitpα-/-/β-/- BM MKs contained higher levels of transforming growth factor β1 (TGF-β1) and interleukin-4 (IL-4), among other myelosuppressive cytokines, than wild-type BM MKs. Correspondingly, BM flush fluid from pitpα-/- and pitpα-/-/β-/- mice had higher concentrations of TGF-β1. CM from pitpα-/- and pitpα-/-/β-/- MKs significantly suppressed HPC colony formation, which was completely extinguished in vitro by neutralizing anti-TGF-β antibody, and treatment of pitpα-/-/β-/- mice in vivo with anti-TGF-β antibodies completely reverted their defects in BM HSC and HPC numbers. TGF-β and IL-4 synergized to inhibit HPC colony formation in vitro. Electron microscopy analysis of pitpα-/-/β-/- MKs revealed ultrastructural defects with depleted α-granules and large, misshaped multivesicular bodies. Von Willebrand factor and thrombospondin-1, like TGF-β, are stored in MK α-granules and were also elevated in CM of cultured pitpα-/-/β-/- MKs. Altogether, these data show that ablating PITPs in MKs indirectly dysregulates hematopoiesis in the BM by disrupting α-granule physiology and secretion of TGF-β1
    corecore