511 research outputs found

    Collaboration and Crisis in Mega Projects: A Study in Cross Corporate Culture Conflict and its Resolution

    Get PDF
    Projects typically involve multiple partners coming together to form a temporary project organization that manages project execution. Partners begin their relationship with soaring aspirations to collaborate but as they move through the project’s various phases and they experience friction, especially those related to cultural clashes, their noble aspirations succumb to creeping, if not full blown, crisis. This, in turn, creates lost relationality and compromised execution. Thus, the question: How can project partners manage the integration of differing corporate cultures and work processes to produce the most effective and efficient outcomes?  Using the mega project of the Panama Canal Expansion Program, the authors explore how a multicultural project organization moved from dysfunctional relationality to synergistic, self-reinforcing, collaboration. A “Collabyrinth” (Smits, 2013) model explores how participants learned to collaborate in a holding environment saturated with layers of complex cultural difference.  The Collabyrinth is composed of six comingling elements: (1) Conflicting Conditions, (2) Submarining, (3) Seeking Consent, (4) Storytelling, (5) Crafting Reciprocal Relations, (6) Synergizing. Certain aspects of crisis management are employed to explain intra-collabyrinth dynamics. Those aspects are: (1) Coming of the Forerunners, (2) Acuteness in the Now, (3) Resolution Seeking, and (4) Constructing Relationality. Specific examples of the collabyrinth journey are provided and recommendations are made to harness the positive power of cross-corporate culture collaboration

    Reproductive Failure in UK Harbour Porpoises Phocoena phocoena : Legacy of Pollutant Exposure?

    Get PDF
    This research was supported by a Marie Curie International Outgoing Fellowship within the Seventh European Community Framework Programme (Project Cetacean-stressors, PIOF-GA-2010-276145 to PDJ and SM). Additional funding was provided through the Agreement on the Conservation of Small Cetaceans of the Baltic, North East Atlantic, Irish and North Seas (ASCOBANS) (Grants SSFA/2008 and SSFA / ASCOBANS / 2010 / 5 to SM). Analysis of Scottish reproductive and teeth samples was funded by the EC-funded BIOCET project (BIOaccumulation of persistent organic pollutants in small CETaceans in European waters: transport pathways and impact on reproduction, grant EVK3-2000-00027 to GJP), and Marine Scotland (GJP). Samples examined in this research were collected under the collaborative Cetacean Strandings Investigation Programme (http://ukstrandings.org/), which is funded by the Department for Environment, Food and Rural Affairs (Defra) and the UK’s Devolved Administrations in Scotland and Wales (http://sciencesearch.defra.gov.uk/Defaul​t.aspx?Menu=Menu&Module=More&Location=No​ne&Completed=0&ProjectID=15331) (grants to PDJ, RD). UK Defra also funded the chemical analysis under a service-level agreement with the Centre for Environment, Fisheries and Aquaculture Science (grants to RJL, JB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A method for genotype validation and primer assessment in heterozygote-deficient species, as demonstrated in the prosobranch mollusc Hydrobia ulvae

    Get PDF
    BACKGROUND: In studies where microsatellite markers are employed, it is essential that the primers designed will reliably and consistently amplify target loci. In populations conforming to Hardy-Weinberg equilibrium (HWE), screening for unreliable markers often relies on the identification of heterozygote deficiencies and subsequent departures from HWE. However, since many populations naturally deviate from HWE, such as many marine invertebrates, it can be difficult to distinguish heterozygote deficiencies resulting from unreliable markers from natural processes. Thus, studies of populations that are suspected to deviate from HWE naturally would benefit from a method to validate genotype data-sets and test the reliability of the designed primers. Levels of heterozygosity are reported for the prosobranch mollusc Hydrobia ulvae (Pennant) together with a method of genotype validation and primer assessment that utilises two primer sets for each locus. Microsatellite loci presented are the first described for the species Hydrobia ulvae; the five loci presented will be of value in further study of populations of H. ulvae. RESULTS: We have developed a novel method of testing primer reliability in naturally heterozygote deficient populations. After the design of an initial primer set, genotyping in 48 Hydrobia ulvae specimens using a single primer set (Primer set_A) revealed heterozygote deficiency in six of the seven loci examined. Redesign of six of the primer pairs (Primer set_B), re-genotyping of the successful individuals from Primer set_A using Primer set_B, and comparison of genotypes between the two primer sets, enabled the identification of two loci (Hulv-06 & Hulv-07) that showed a high degree of discrepancy between primer sets A and B (0% & only 25% alleles matching, respectively), suggesting unreliability in these primers. The discrepancies included changes from heterozygotes to homozygotes or vice versa, and some individuals who also displayed new alleles of unexpected sizes. Of the other four loci examined (Hulv-01, Hulv-03, Hulv-04, & Hulv-05), all showed more than 95% agreement between primer sets. Hulv-01, Hulv-03, & Hulv-05 displayed similar levels of heterozygosity with both primer sets suggesting that these loci are indeed heterozygote deficient, while Hulv-08 showed no deficiency in either primer set. CONCLUSION: The simple method described to identify unreliable markers will prove a useful technique for many population studies, and also emphasises the dangers in using a single primer set and assuming marker reliability in populations shown to naturally deviate from HWE

    Not just fat: investigating the proteome of cetacean blubber tissue

    Get PDF
    Mammalian adipose tissue is increasingly being recognized as an endocrine organ involved in the regulation of a number of metabolic processes and pathways. It responds to signals from different hormone systems and the central nervous system, and expresses a variety of protein factors with important paracrine and endocrine functions. This study presents a first step towards the systematic analysis of the protein content of cetacean adipose tissue, the blubber, in order to investigate the kinds of proteins present and their relative abundance. Full depth blubber subsamples were collected from dead-stranded harbour porpoises (Phocoena phocoena) (n = 21). Three total protein extraction methods were trialled, and the highest total protein yields with the lowest extraction variability were achieved using a RIPA cell lysis and extraction buffer based protocol. Extracted proteins were separated using 1D Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE), and identified using nanoflow Liquid Chromatography Electrospray Ionization in tandem with Mass Spectrometry (nLC-ESI–MS/MS). A range of proteins were identified (n = 295) and classed into eight functional groups, the most abundant of which were involved in cell function and metabolism (45%), immune response and inflammation (15%) and lipid metabolism (11%). These proteins likely originate both from the various cell types within the blubber tissue itself, and from the circulation. They therefore have the potential to capture information on the cellular and physiological stresses experienced by individuals at the time of sampling. The importance of this proteomic approach is two-fold: Firstly, it could help to assign novel functions to marine mammal blubber in keeping with current understanding of the multi-functional role of adipose tissue in other mammals. Secondly, it could lead to the development of a suite of biomarkers to better monitor the physiological state and health of live individuals though remote blubber biopsy sampling

    Atmospheric Sampling on Ascension Island Using Multirotor UAVs

    Get PDF
    As part of an NERC-funded project investigating the southern methane anomaly, a team drawn from the Universities of Bristol, Birmingham and Royal Holloway flew small unmanned multirotors from Ascension Island for the purposes of atmospheric sampling. The objective of these flights was to collect air samples from below, within and above a persistent atmospheric feature, the Trade Wind Inversion, in order to characterise methane concentrations and their isotopic composition. These parameters allow the methane in the different air masses to be tied to different source locations, which can be further analysed using back trajectory atmospheric computer modelling. This paper describes the campaigns as a whole including the design of the bespoke eight rotor aircraft and the operational requirements that were needed in order to collect targeted multiple air samples up to 2.5 km above the ground level in under 20 min of flight time. Key features of the system described include real-time feedback of temperature and humidity, as well as system health data. This enabled detailed targeting of the air sampling design to be realised and planned during the flight mission on the downward leg, a capability that is invaluable in the presence of uncertainty in the pre-flight meteorological data. Environmental considerations are also outlined together with the flight plans that were created in order to rapidly fly vertical transects of the atmosphere whilst encountering changing wind conditions. Two sampling campaigns were carried out in September 2014 and July 2015 with over one hundred high altitude sampling missions. Lessons learned are given throughout, including those associated with operating in the testing environment encountered on Ascension Island

    Evaluating morphometric and metabolic markers of body condition in a small cetacean, the harbor porpoise (Phocoena phocoena)

    Get PDF
    Mammalian body condition is an important individual fitness metric as it affects both survival and reproductive success. The ability to accurately measure condition has key implications for predicting individual and population health, and therefore monitoring the population-level effects of changing environments. No consensus currently exists on the best measure to quantitatively estimate body condition in many species, including cetaceans. Here, two measures of body condition were investigated in the harbor porpoise (Phocoena phocoena). First, the most informative morphometric body condition index was identified. The mass/length2 ratio was the most appropriate morphometric index of 10 indices tested, explaining 50% of the variation in condition in stranded, male porpoises with different causes of death and across age classes (n = 291). Mass/length2 was then used to evaluate a second measure, blubber cortisol concentration, as a metabolic condition marker. Cortisol is the main glucocorticoid hormone involved in the regulation of lipolysis and overall energy balance in mammals, and concentrations could provide information on physiological state. Blubber cortisol concentrations did not significantly vary around the girth (n = 20), but there was significant vertical stratification through the blubber depth with highest concentrations in the innermost layer. Concentrations in the dorsal, outermost layer were representative of concentrations through the full blubber depth, showed variation by sex and age class, and were negatively correlated with mass/length2. Using this species as a model for live cetaceans from which standard morphometric measurements cannot be taken, but from which blubber biopsy samples are routinely collected, cortisol concentrations in the dorsal, outermost blubber layer could potentially be used as a biomarker of condition in free-ranging animals

    Empathy Measurement in Autism

    Get PDF
    Introduction A deficit in empathy is so often assumed in autistic individuals, that poor social outcomes are treated through empathy interventions without investigating other contributing factors. To target interventions to client needs, we need to determine whether an empathy intervention is required, or whether poor social outcomes are best improved through an alternative focus of support. Practitioners often overlook the fact that our understandings of empathy in autism are limited by the measures we use, and some do not evaluate client empathy at all, instead assuming a client will need an empathy intervention simply because they are autistic. Practitioners, therefore, need access to high quality empathy measures to determine whether an empathy intervention is the best approach for their autistic clients. The quality of these measures is paramount. Method A systematic literature review was conducted to examine the measurement properties of empathy self-reports used with both autistic and predominant neurotype adults. Articles were obtained from 7 databases, followed by ancestral searching for grey literature. I, an autistic researcher, will discuss how we critically evaluated the evidence for some of the most popular empathy measures, and will discuss the implications for research and practice. Results The systematic review obtained data on several empathy self-reports, including the Empathy Quotient and the Interpersonal Reactivity Index. Preliminary findings will be discussed, including how features such as poor reliability and non-literal language may bias the scores of autistic people. Discussion This study highlights gaps in our knowledge about measuring empathy in autistic adults and considers how these gaps affect our knowledge of empathy in the autistic population. Finally, I will propose solutions to improve empathy measurement for autistic adults. Improved measurement will help clinicians to determine where an empathy intervention is the best approach to supporting an autistic client with social difficulties

    Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    Get PDF
    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4¿hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30¿hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events

    Stranding collections indicate broad-scale connectivity across the range of a pelagic marine predator, the Atlantic white-sided dolphin (Lagenorhynchus acutus)

    Get PDF
    Understanding the extent of population genetic connectivity in highly mobile marine species is vital for delineating management units. However, obtaining samples for generating genetic data is challenging for species inhabiting inaccessible pelagic waters. As a result, management strategies do not always align with underlying population biology. Marine strandings provide an accessible and cost-effective sample source for research on elusive cetaceans and can be used collaboratively among stranding networks to generate ecosystem-wide population genetic assessments. Here, we used samples collected from strandings and free-ranging individuals across the North Atlantic to investigate population structure, genetic diversity, and individual relatedness in the Atlantic white-sided dolphin (AWSD; Lagenorhynchus acutus), a widely distributed marine predator. Mitochondrial DNA sequences and nuclear DNA single-nucleotide polymorphisms showed a complete lack of population differentiation across the species’ range, implying an unusual pattern of strong connectivity. No differences in genetic diversity among geographic regions and weak within-group relatedness further support the existence of species-wide panmixia in AWSD. This study emphasises the value of long-term stranding collections for cetacean research and has important implications for AWSD conservation management

    Spatiotemporal mortality and demographic trends in a small cetacean: Strandings to inform conservation management

    Get PDF
    With global increases in anthropogenic pressures on wildlife populations comes a responsibility to manage them effectively. The assessment of marine ecosystem health is challenging and often relies on monitoring indicator species, such as cetaceans. Most cetaceans are however highly mobile and spend the majority of their time hidden from direct view, resulting in uncertainty on even the most basic population metrics. Here, we discuss the value of long-term and internationally combined stranding records as a valuable source of information on the demographic and mortality trends of the harbour porpoise (Phocoena phocoena) in the North Sea. We analysed stranding records (n = 16,181) from 1990 to 2017 and demonstrate a strong heterogeneous seasonal pattern of strandings throughout the North Sea, indicative of season-specific distribution or habitat use, and season-specific mortality. The annual incidence of strandings has increased since 1990, with a notable steeper rise particularly in the southern North Sea since 2005. A high density of neonatal strandings occurred specifically in the eastern North Sea, indicative of areas important for calving, and large numbers of juvenile males stranded in the southern parts, indicative of a population sink or reflecting higher male dispersion. These findings highlight the power of stranding records to detect potentially vulnerable population groups in time and space. This knowledge is vital for managers and can guide, for example, conservation measures such as the establishment of time-area-specific limits to potentially harmful human activities, aiming to reduce the number and intensity of human-wildlife conflicts
    corecore