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Abstract
Background: In studies where microsatellite markers are employed, it is essential that the primers designed will
reliably and consistently amplify target loci. In populations conforming to Hardy-Weinberg equilibrium (HWE),
screening for unreliable markers often relies on the identification of heterozygote deficiencies and subsequent
departures from HWE. However, since many populations naturally deviate from HWE, such as many marine
invertebrates, it can be difficult to distinguish heterozygote deficiencies resulting from unreliable markers from
natural processes. Thus, studies of populations that are suspected to deviate from HWE naturally would benefit
from a method to validate genotype data-sets and test the reliability of the designed primers. Levels of
heterozygosity are reported for the prosobranch mollusc Hydrobia ulvae (Pennant) together with a method of
genotype validation and primer assessment that utilises two primer sets for each locus. Microsatellite loci
presented are the first described for the species Hydrobia ulvae; the five loci presented will be of value in further
study of populations of H. ulvae.

Results: We have developed a novel method of testing primer reliability in naturally heterozygote deficient
populations. After the design of an initial primer set, genotyping in 48 Hydrobia ulvae specimens using a single
primer set (Primer set_A) revealed heterozygote deficiency in six of the seven loci examined. Redesign of six of
the primer pairs (Primer set_B), re-genotyping of the successful individuals from Primer set_A using Primer set_B,
and comparison of genotypes between the two primer sets, enabled the identification of two loci (Hulv-06 & Hulv-
07) that showed a high degree of discrepancy between primer sets A and B (0% & only 25% alleles matching,
respectively), suggesting unreliability in these primers. The discrepancies included changes from heterozygotes to
homozygotes or vice versa, and some individuals who also displayed new alleles of unexpected sizes. Of the other
four loci examined (Hulv-01, Hulv-03, Hulv-04, & Hulv-05), all showed more than 95% agreement between primer
sets. Hulv-01, Hulv-03, & Hulv-05 displayed similar levels of heterozygosity with both primer sets suggesting that
these loci are indeed heterozygote deficient, while Hulv-08 showed no deficiency in either primer set.

Conclusion: The simple method described to identify unreliable markers will prove a useful technique for many
population studies, and also emphasises the dangers in using a single primer set and assuming marker reliability in
populations shown to naturally deviate from HWE.
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Background
In recent years, the discovery and development of genetic
markers such as microsatellites has led to a rapid growth
in the number of molecular studies, with the isolation and
development of microsatellite loci becoming relatively
quick and straight-forward in many taxa [reviewed in [1]].
The method of Armour et al. 1994 has been successfully
used for birds [2,3], mammals [4,5] and fish [6] but this
success has not been ubiquitous across all taxa and the
identification of microsatellite markers in many inverte-
brates has proved to be difficult, e.g. mosquitoes [7] and
butterflies [8,9]. Even after successful microsatellite isola-
tion, primers developed for certain species suffer from
multiple banding patterns and random primer binding,
leading to difficulties in obtaining reliable genotype data.
The presence of repeat regions in the genome, known as
SINEs (short interspersed nuclear elements), repeat mic-
rosatellite regions, and a general failure to amplify a spe-
cific product, have often been cited as potential causes for
inaccuracies in data sets, for example in nematodes [10],
lepidopterans [8,9,11] and marine molluscs [12-14].

In many marine invertebrates the situation is further com-
plicated by a deficiency in the number of heterozygotes
observed (relative to Hardy-Weinberg expectation) (see
Additional file 1), with both allozyme and microsatellite
studies documenting the phenomenon in many marine
bivalve and gastropod populations [14-21]. While some
of the species presented in Additional file 1 are hermaph-
roditic, e.g. Physa acuta, and thus may be expected to show
heterozygote deficiency (due to high potential for selfing
which would increase homozygosity in the population),
there are many more examples (see Additional file 1)
where species display separate sexes and would not neces-
sarily be expected to display heterozygote deficiency.

With this in mind, one should consider the numerous fac-
tors which can cause heterozygote deficiencies. These
include poor primer design and optimisation, null alleles
[22], genotyping errors (stuttering or large allele dropout
[23]), mutation, inbreeding effects, SINEs, non-random
mating and population admixture. However, despite
extensive examination in some cases [17,24] the causes
behind these heterozygote deficiencies still remain
unknown and, as a consequence, the ability to utilise tra-
ditional techniques for primer and population assess-
ments may be significantly compromised.

In "model" populations, which are expected to conform
to HWE, testing for heterozygote deficiency in loci is com-
monly used as a means to assess designed primers and
genotype reliability. In such cases identification of an
unreliable primer pair, or a locus affected by null alleles,
is simply a matter of identifying heterozygote deficiency at
that locus. This task is becoming increasingly simple due
to the wide array of tools available for population and

locus assessment (e.g. GENEPOP[25]; CERVUS[26]; MICRO-

CHECKER, [27]). Once identified, the primer pair can then
be removed from further study. Difficulties can arise,
however, when attempting to identify unreliable primers
and null alleles in populations that naturally display het-
erozygote deficiency (see Additional file 1). In these cases,
the use of traditional analysis and software are no longer
effective, as they often assume that populations conform
to HWE and display expected heterozygosity. Thus, iden-
tifying unreliable primers by analysing departures from
HWE is ineffective due to the fact that the population itself
is naturally deficient. In these cases primer reliability is
normally assumed without additional investigation
beyond these standard tests (Additional file 1). As a result,
unreliable primers may often remain undetected.

In this study microsatellite loci were isolated and exam-
ined for heterozygote deficiency in the prosobranch mol-
lusc Hydrobia ulvae. A previous study by Haase [16] using
allozyme markers suggests that H. ulvae populations are
naturally heterozygote deficient; therefore further testing
was conducted here to see if the same conclusions would
be supported by microsatellite genotyping data. A novel
technique was then used to assess microsatellite marker
reliability by designing two microsatellite marker primer
sets to amplify the same loci. By altering the binding sites,
designing additional primers (B-primers) to amplify the
same loci as the original primer set (A-primers), and com-
paring genotypes between A and B, a method is presented
to assess the reliability of Primer set_A. Additionally, the
method can also be used to identify inaccuracies due to
PCR amplification failure and erroneous genotype scor-
ing.

Hydrobia ulvae is a widespread and abundant member of
the benthic fauna of estuarine habitats. It is dioecious
with sexes being easily identified through dissection. On
the west coast of Wales this species has peaks of spawning
activity in spring and autumn and produces plank-
totrophic larvae that remain in the plankton for up to four
weeks before settlement [28]. This period of development
affords the potential for dispersal to new habitats and
mixing with geographically separate populations. The
species provides an interesting case for molecular analysis
as the pelagic dispersal phase raises fascinating questions
on gene flow, differentiation, recruitment, and inbreed-
ing, but there remains the potential for self-recruitment of
estuarine populations [29].

The objectives of this study were: (1) to isolate polymor-
phic microsatellite loci for Hydrobia ulvae, (2) to conduct
standard tests for HWE, heterozygosity, linkage equilib-
rium and sex linkage and (3) to assess the use of alterna-
tive primer sets for the same loci as a tool to assess primer
reliability.
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Results
Microsatellite library preparation, Primer set_A design and 
testing
The first step was to isolate polymorphic microsatellite
loci for H. ulvae and test to see if the population examined
displayed heterozygote deficiency. Samples were collected
from a presumed single population of Hydrobia ulvae from
an area of approximately 1.0 m2 in the Dyfi estuary, Wales
(52° 31' 31.9" N; 4° 2' 40.2" W) using a 0.5 mm mesh
sieve to remove individuals from the sediment. Specimens
were stored alive in sea water of 28 ‰ at 14°C until
required for DNA extraction.

Prior to DNA extraction, Hydrobia ulvae individuals were
dissected and checked for parasitic infection. Those that
showed signs of infection were removed from further
study to avoid the possibility of isolating microsatellites
from the parasites. Extraction of Hydrobia DNA and prep-
aration of an enriched library yielded 118 unique micros-
atellite sequences that were submitted to the EMBL
Nucleotide Sequence Database [30] [EMBL AM409397–
AM409514]. For details of DNA extraction and enriched
library development, see Methods. All the obtained
sequences were confirmed to be unique using BLASTN
version 2.2.4 [31]. Forty-seven loci possessed sufficient
flanking sequence for primer design (in terms of repeat
length, sequence length and base-pair composition of the
flanking sequence). Primer pairs were designed for 17 loci
using PRIMER3 [32], labelled with a fluorescent dye, and
optimised with respect to temperature (gradient range
50–70°C) and MgCl2 concentration (1.5 mM, 2.0 mM
and 2.5 mM). A short chain of nucleotides (GTTTCTT),
known as a pigtail, was also added to the 5' end of each
reverse primer to reduce stutter bands during PCR ampli-
fication [33].

The subsequent PCR and genotyping of 16 snails from the
Dyfi estuary (including the six individuals from which the
library was made) using 17 designed primers, resulted in
nine primers failing to amplify a specific product, and one
locus, Hulv-10 (AM409406; Forward-TCGTACCAG-
GAAAGGCCTCAG, Reverse-CCACGTCACTTTCGGT-
GCTC) being monomorphic in all 16 individuals tested.
For each of the seven remaining polymorphic loci a fur-
ther 48 Hydrobia ulvae individuals were genotyped. The
primers designed for these seven loci are hereafter
described as Primer set_A (Additional file 2). The expected
and observed heterozygosity of each locus (as amplified
with Primer set_A) was calculated and null allele fre-
quency estimates obtained using CERVUS version 2.0
[26], while deviations from HWE and linkage equilibrium
were examined using exact tests in GENEPOP (v3.4) [25].
Results showed that the seven polymorphic loci (when
amplified using Primer set_A) were highly variable, with
the number of alleles ranging from 16 to 27 (Additional

file 2). Six of the loci were found to display a heterozygote
deficiency when compared with the expectation under
HWE. The exception was locus Hulv-04_ A, which was in
Hardy-Weinberg equilibrium (Additional file 2). Two of
the loci (Hulv-06 and Hulv-07) showed very low levels of
heterozygosity, suggesting possible unreliability in the
primers (Additional file 2). However, to justify the
removal of these loci and designed primers, further exam-
ination was required, as low heterozygosity is not neces-
sarily a precursor for unreliable markers. Another notable
result was the amplification success shown by Hulv-01_A,
Hulv-06_A and Hulv-07_A primers. At these loci, amplifi-
cation success was slightly lower than expected (83.3%,
83.3% and 70.8% of individuals amplified, respectively).
Given that high levels of amplification failure can be used
as an indicator of unreliable primers, the opportunity was
taken to explore the connection between amplification
failure and primer reliability by examining these loci
using the primer redesign technique described.

As well as heterozygote analysis, tests were conducted
using the software MICROCHECKER[27] to examine geno-
typing error, presence of null alleles, allele frequency esti-
mates, allele stutter and allele dropout (in which smaller
alleles are preferentially amplified over larger alleles [23]).
Interestingly, all results were negative except for null alle-
les, which the software highlighted could be a potential
factor in causing the heterozygote deficiency at all but one
of the loci, Hulv-04. For this reason, and to ensure that
alleles were not failing to amplify due to the PCR condi-
tions, each locus was PCR-amplified twice using each
primer set (A & B). On both occasions the same genotypes
were observed. Alleles were resolved on an agarose gel and
allele sizes were checked to see if they were consistent with
the size expected based on the sequence of the cloned
allele. Examination of the gel showed no indication of
large alleles (> 500 bp), suggesting that neither SINE
insertions, nor duplicate microsatellite regions, were
present in the products. Pedigrees were not available for
checking the inheritance of null alleles due to difficulties
in cultivating the species in the laboratory.

Loci were also examined for sex linkage by visually com-
paring the genotypes of individuals of known sex (sexes
assigned after dissection), and the results suggested no
association between apparent homozygosity and sex in
the genotyped individuals. Similarly, all loci were checked
for linkage disequilibrium using GENEPOP v3.4 without
Bonferroni correction and no linkage disequilibrium was
observed.

Comparing genotype data from two sets of primers for 
each locus
In order to test genotype outputs and Primer set_A relia-
bility, microsatellite primers were redesigned (Primer
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set_B) (Additional file 3) for six loci (Hulv-01, Hulv-03,
Hulv-04, Hulv-05, Hulv-06 & Hulv-07) to amplify the same
loci as Primer set_A. "B" primers were not designed for
Hulv-02 due to difficulty in identifying new primer sites
(due to the length and base-pair composition of the flank-
ing sequence), so this locus could not be verified. In all
other cases, primers were designed at sites as distinct as
possible from the original primer sites. In some cases,
short flanking regions hindered primer design and thus
only one of the primers in a pair could be significantly
shifted. However, where possible the 3' end of the primer
was redesigned so that primer reliability could still be
assessed. Single mismatches at or near the 3' end of the
primer are known to affect the efficiency of polymerase
extension and oligonucleotide stability [34] and will have
a greater effect upon amplified products than mismatches
elsewhere [35,36], thus where possible an alteration in
the 3' end of the primer sequence was attempted. The rel-
evance of this restriction in the current study and to the
technique as a whole is discussed later.

Redesigned Primer set _B was optimised, amplified and
visualised in exactly the same way as Primer set_A, using
only the DNA templates from individuals which yielded
successful amplification in Primer set_A. Samples which
failed to amplify a product in Primer set_A were not exam-
ined using Primer set_B, as regardless of the output from
Primer set_B in these cases, no comparison could ever be
made. This was also done so that direct comparison of
successful amplifications could be made between the
primer sets. Alleles were scored independently on separate
ABI3730 gel loading runs for each primer set (A and B) to
prevent any bias in the data.

To assess primer data, the presence and size of alleles from
Primer set_B were compared with those originally ampli-
fied by Primer set_A. Allele sizes were expected to show a
consistent and predictable difference in size between the
primer sets within each locus, due to the difference in
product size caused by the redesign and movement of
primers. To be classified as a successful match between
primers, both alleles in a heterozygote needed to be the
same for both primer sets. Likewise, in homozygotes the
single alleles needed to display the same product after the
predictable size difference was taken into account.

Results indicate that when both primer sets (A and B)
were used in conjunction to amplify the six target loci,
four of these (Hulv-01, Hulv-03, Hulv-04, & Hulv-05)
showed more than 95% agreement (allele-allele) between
the alleles amplified by the two primer sets A and B (Addi-
tional file 4), suggesting that these primers from Primer
set_A had amplified the target loci correctly, and thus are
reliable. However, when comparison was made between

Primer set_A and Primer set_B for the remaining two loci
(Hulv-06 & Hulv-07), a high degree of discrepancy was
observed (0% & only 25% alleles matching, respectively)
(Additional file 4). These discrepancies included a change
from heterozygotes to homozygotes or vice versa, while
some samples also displayed new unexpected allele sizes.
Samples which failed to amplify the same target loci in
each primer set were examined to ensure that poor DNA
was not the underlying cause. No individuals consistently
failed to amplify and the individuals failing to amplify dif-
fered between loci and thus poor DNA samples were not
to blame for amplification failures.

When these findings are coupled with the previously iden-
tified decreased amplification success at these loci, it is
clear that Hulv-06_A and Hulv-07_A primers are not suita-
ble for further use in population studies due to their unre-
liability. Interestingly, despite the fact that Hulv-01_A was
previously shown to display similar levels of amplifica-
tion failure as Hulv-06_A and Hulv-07_A, analysis using
redesigned markers has highlighted that Hulv-01_A prim-
ers were in fact producing reliable genotype data. There-
fore the redesign technique presented here demonstrates
that decreased amplification success does not necessary
mean a marker is unreliable.

Discussion
This study has shown that in order to identify and confi-
dently remove unreliable markers in heterozygote defi-
cient populations, additional techniques are required
beyond those currently applied to microsatellite data. The
currently used tests such as examination of HWE, hetero-
zygosity, amplification failure, allele frequency distribu-
tions and linkage equilibrium are not sufficient to identify
reliability in primer sets. This may particularly be the case
for invertebrate species, many of which commonly dis-
play departures from HWE and heterozygote deficiencies
[14,19]. The results show that the majority of the loci
examined (6/7) displayed heterozygote deficiency (Addi-
tional file 2) and H. ulvae therefore exhibits similar char-
acteristics to many of the marine and freshwater
invertebrates (as detailed in Additional file 1). The tech-
nique presented here has shown that after primer rede-
sign, Hulv-06 and Hulv-07 cannot be reliably genotyped
due to the discrepancies between each primer set. There-
fore it is concluded that these loci, along with designed
primers, should not be used in future studies. Similarly,
the technique has also provided increased confidence in
the remaining loci (Hulv-01, Hulv-03, Hulv-04 and Hulv-
05), which all showed similar genotype outputs regardless
of the primer set implemented. For this reason, the tech-
nique described here presents a useful method for helping
to assess the reliability of designed primers in heterozy-
gote-deficient populations.
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Previous published studies have suggested many causes
for heterozygote deficiency in invertebrates, including
selection, inbreeding, mutation and null alleles, SINEs,
poor primer design and amplification error [14,19]. How-
ever, attempts to ascertain the exact source of the hetero-
zygote deficiency have often had limited success [21,24],
and while it is not the purpose of this study to identify the
source of the heterozygote deficiency, the technique and
results obtained can be used to shed light into the cause of
the heterozygosity in the species.

The first factor to consider is selection. While some micro-
satellite loci have been shown to be affected by selection
[37,38], the majority are still considered to be selectively
neutral [39]. This study took care not to incorporate tri-
nucleotide repeats, which have been shown to occur in
coding regions of the genome and thus are more likely to
be subject to selection [40]. Therefore, while it cannot be
categorically ruled out, selection is not likely to be the
cause of the observed deficiencies. Similarly, given what is
known about the life stages of the target organism,
inbreeding seems unlikely. In species with limited disper-
sal or direct development, it is simple to imagine inbreed-
ing as a dominant force [41,42], which can be detrimental
to species fitness [43,44]. However, given that Hydrobia
ulvae has a dispersal phase of up to four weeks [28], a
good potential for mixing of progeny by tides and cur-
rents, and the likelihood of widespread settlement of lar-
vae within the estuary, it seems highly improbable that
inbreeding is occurring. Another alternative potential
cause is the Wahlund effect, which is a heterozygote defi-
ciency due to the accidental pooling of discrete sub-popu-
lations. Indeed, by disregarding sub-structuring within
populations one would expect to see a common defi-
ciency across the majority of the loci as observed in this
study [14,42]. However, it is unlikely that samples taken
from a homogeneous area of less than 1 m2, as done here,
could contain many different sub-populations [16].
Nonetheless, in order to be certain, additional genotypic
analysis would be required on individuals from identified
cohorts and known local spatial localities [41].

Perhaps the most interesting factor to consider with regard
to the technique presented here is the presence of null
alleles and their potential effect upon levels of heterozy-
gosity. Null alleles represent base-pair mutations in the
primer regions which cause primer binding to weaken
and/or fail, resulting in a failure to amplify certain alleles
[45]. As a result, the presence of null alleles in data sets has
been commonly suggested as a contributor to heterozy-
gote deficiency [46,47] (Additional file 1). While micros-
atellite regions are often highly polymorphic due to a high
rate of mutation through replication slippage and proof-
reading events [48], the flanking regions surrounding mic-
rosatellite repeat regions are generally considered to be

more conserved. However, given the very high levels of
polymorphism shown in microsatellite loci examined for
H. ulvae (Additional file 2), it is possible that the sequence
flanking the repeat regions may also exhibit increased lev-
els of mutation which would certainly reduce the effec-
tiveness of primer binding and result in an abundance of
null alleles. Microsatellite loci in humans have been esti-
mated to have mutation rates of about 10-4 [49]. However,
microsatellite mutation is known to vary between differ-
ent taxa [50,51], and while little is known specifically
about the mutation rate in marine molluscs, several stud-
ies, including this current study, have shown high poly-
morphism in microsatellite loci in marine invertebrates
[14,20,52], suggesting that mutation rates may be high.
For this reason further investigation in marine inverte-
brates is required (i.e. genetic sequencing) to determine
whether mutations in the flanking regions introduce
errors into genotype data and consequently influence lev-
els of heterozygosity.

Despite this, there are several reasons to suggest that
mutation and null alleles are not the explanation for the
overall heterozygote deficiency observed in Hydrobia
ulvae. First, given their nature one would typically expect
null alleles to occur at a minority of loci and not across the
majority of loci as seen in this study [14,19,39]. Secondly,
results from the double-primer technique show similar
heterozygote deficiencies and null allele frequencies in
both primer sets A and B in all loci with the exception of
Hulv-06 and Hulv-07 (Additional file 4). If nulls were the
explanation for the heterozygote deficiency then we
would not expect both primer sets to be equally affected.

Mutation and null alleles do however, present one possi-
ble explanation for the poor match between primer sets
for Hulv-06 and Hulv-07, particularly as the predicted null
allele frequencies at these loci were shown by the software
MICROCHECKER to be much higher than for all the other
loci examined (Additional file 4). Indeed, when coupled
with the low amplification rate of individuals shown by
Hulv-06_A and Hulv-07_A primers (83.3 and 70.8%,
respectively), there is evidence to suggest mutation in the
flanking regions and null alleles. Alternatively, the mis-
match between primer sets A and B for Hulv-06 and Hulv-
07 could be due to similarity in the flanking regions of dif-
ferent loci. In the study by Meglecz et al. [8] on lepidop-
terans (butterflies and moths), high flanking sequence
similarity was observed at a number of loci, which led to
difficulties in designing effective primer sets. Likewise, in
a study on the marine gastropod Littorina saxatilis, anom-
alous large alleles were identified that may signify the
presence of flanking similarity in marine invertebrates
[20]. While no evidence has been found in the present
study for large alleles above 500 bp as described by
Sokolov et al. [20], it is entirely possible that flanking
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region similarity could introduce errors into genotyped
data and thus disrupt the levels of heterozygosity
observed. However, while further investigation into the
matter is required, the fact that very little sequence simi-
larity was identified in this study suggests that it is not a
dominant factor.

While the precise nature of the overall heterozygote defi-
ciency still remains unclear, it is concluded that mutation
and null alleles are the likely explanation for the unrelia-
bility observed at two of the loci examined (Hulv-06 and
Hulv-07). Drawing definitive conclusions on the presence
of null alleles, the cause of heterozygote deficiency and
primer reliability, has been limited in this study due to
constraints on primer redesign imposed by the restricted
length of flanking regions. However, when redesigning
primers, attempts were made to make B-primers as dis-
tinct from A-primers as possible, particularly at the 3' end
of the primer, as this region is known to affect product
amplification and polymerase extension [34,36,35].
Given that the occurrence of restricted flanking regions in
microsatellite studies has not been commonly reported,
and that information regarding the length of flanking
regions in different species is scarce, it is difficult to esti-
mate the likelihood of primer redesign complications in
other species; nevertheless, it is believed that the tech-
nique presented here provides an important contribution
to the field, as it offers a practical alternative to merely
assuming primer reliability in heterozygote-deficient pop-
ulations. Most importantly, this study has highlighted the
need for increased caution in assessing primer reliability
using only standard assessments, especially in popula-
tions commonly exhibiting heterozygote deficiency and
deviations from HWE. Moreover, this study has illustrated
that additional testing of designed primers in heterozy-
gote deficient populations can identify potentially unreli-
able markers, amplification errors and genotyping
failures, which are commonly associated with microsatel-
lite studies [12,39]. For these reasons, the methodology
presented will be of potential interest/application to
future studies on invertebrate and non-invertebrate spe-
cies alike. Indeed, the technique will be of value in all mic-
rosatellite studies that seek increased confidence in
genotype assignments. While doubling expenditure on
primers may be seen as a disadvantage, the benefits make
the technique a sound investment when one considers the
high cost of running unreliable primers in large-scale pop-
ulation analysis. The technique will also be of particular
use in studies where small primer sets are used due to dif-
ficulties in microsatellite isolation. In these cases, it is
imperative that all primers consistently amplify a reliable
product, given the low number being implemented. Sim-
ilarly, the genotype data validation provided by this tech-
nique will also enable increased confidence in species
where multiple banding patterns and anomalous large
alleles are often noted [20].

In addition to the technique proposed, five novel Hydrobia
ulvae polymorphic loci (Hulv-01, Hulv-02, Hulv-03, Hulv-
04 & Hulv-05) (Additional file 2) are presented for further
use in population studies. Given their level of polymor-
phism, these microsatellites, and the primers described,
will provide valuable tools in the study of genetic mixing
and population differentiation in Hydrobia ulvae.

Conclusion
While it is clear that Hydrobia ulvae is characteristic of its
taxon with regard to heterozygosity levels, the methods
described here provide a useful tool for assessing geno-
type data and primer reliability in studies where increased
confidence in microsatellites is desired. While traditional
examination of HWE and heterozygote deficiency has
been shown to be insufficient to identify unreliable prim-
ers in naturally deficient populations, the use of dual
primers provides a simple alternative to merely assuming
reliability. In studies that have previously only used tradi-
tional methods, or assumed primer reliability, the tech-
nique may serve to identify unreliable primer pairs early
in the study before the cost of genotyping multiple indi-
viduals is incurred.

Therefore, while it is clear that standard examinations and
software can serve to highlight many primer reliability
issues in model populations, heterozygote deficient and
other non-model populations require the additional vali-
dation provided by designing a second primer set. In
order for microsatellite primers to be used effectively in
population studies and to justify the lengthy developmen-
tal process, they need to be reliable and of sufficient
power, a situation which is more likely when validation
steps are taken.

Methods
DNA isolation
Genomic DNA was extracted for microsatellite library
development and genotyping using a modified CTAB pro-
cedure with proteinase K digestion and a chloroform-iso-
amylalcohol protocol [53].

Microsatellite library preparation
An enriched Hydrobia ulvae microsatellite library was pre-
pared using a method based on Armour et al. [54], with
modifications described by Gibbs et al. [55]. Six Hydrobia
ulvae individuals of unknown sex were pooled to obtain a
sufficient amount of genomic DNA from which to prepare
the library. The pooled genomic DNA (2 μg) was digested
using MboI (Qbiogene, Cambridge, UK), and ligated to
double-stranded Sau-L linkers [56]. Size-selected (200–
800 bp), digested genomic DNA fragments were then
denatured and hybridised against double-stranded dena-
tured dinucleotide and tetranucleotide sequences that had
been bound to nylon Hybond membrane (Amersham
Pharmaceuticals Ltd, Buckinghamshire, UK). The Armour
Page 6 of 9
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[54]et al.  pre-enrichment PCR was not performed [as in
[55]]. The dinucleotide sequences (AC.GT)n and (AG.CT)n
were obtained as DNA Alternating Copolymers (Amer-
sham Pharmaceuticals Ltd, Buckinghamshire, UK) and
the tetranucleotide sequences (TTTC.GAAA)n,
(GTAA.TTAC)n, (GATA.TATC)n, (CTAA.TTAG)n and
(TAAA.TTTA)n were prepared using two rounds of PCR
amplification as in Armour et al. [54]. Once recovered, the
microsatellite-enriched Hydrobia ulvae fragments were
separated from the Sau-L linkers by digestion with MboI.
Fragments were then ligated into BamHI/BAP-dephos-
phorylated pUC19 vector (Qbiogene) and transformed
into XL1-Blue competent cells (Stratagene). Transformant
colonies were grown overnight at 37°C on agar plates
containing Luria Broth, Ampicillin, X-gal and IPTG,
bound to a Hybond nylon filter and screened with [α32P]-
dCTP and/or [α32P]-dATP radiolabelled dinucleotide and
tetranucleotide sequences as described above. In total,
902 transformants were screened and 265 produced a
positive autoradiograph signal (4 of 18 from the dinucle-
otide library and 261 of 884 from the tetranucleotide
enriched library). Sequence data for 153 clones was
obtained using an ABI 3730 capillary sequencer with
BigDye chemistry (Applied Biosystems). All sequences
were checked for duplication using stand-alone BLAST
software (protocol available at [57] and MEGA v.3.1
sequence alignment software [58]. Of the 153 sequences
examined, 118 were found to be unique.

PCR and genotyping
When genotyping individual Hydrobia ulvae, each PCR
reaction contained approximately 5–10 ng of genomic
DNA, 0.5 μM of each primer, 1.5–2 mM MgCl2 (Addi-
tional file 2), 0.2 mM of each dNTP and 0.05 units of Taq
DNA polymerase (Bioline, London, UK) in the manufac-
turer's buffer [final concentration: 16 mM (NH4)2SO4, 67
mM Tris-HCl (pH 8.8 at 25°C), 0.01% Tween-20]. PCR
amplification was performed using a thermal cycler (MJ
Research model PTC DNA engine) with the following pro-
gram: one cycle of 3 min at 94°C, followed by: 35 cycles
of 94°C for 30 s, annealing temperature (Additional file
2) for 30 s, 72°C for 45 s and a final extension cycle of 10
min at 72°C. PCR products were visualised on 2% agarose
gel, pre-stained with ethidium bromide. Amplified prod-
uct sizes were compared to the size expected based on the
cloned allele sequence and checked for the presence of
large alleles (> 500 bp), a potential by-product of SINE
insertions [8,9].

A fraction of the fluorescently-labelled PCR product was
diluted to one part per thousand and loaded on an ABI
3730 DNA Analyzer, along with ROX500 size marker
(Applied Biosystems). Allele sizes were assigned using
GENEMAPPER 3.7 software (Applied Biosystems).
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