232 research outputs found

    Toll-like Receptor 7 Controls the Anti-Retroviral Germinal Center Response

    Get PDF
    The development of vaccines that can enhance immunity to viral pathogens is an important goal. However, the innate molecular pathways that regulate the strength and quality of the immune response remain largely uncharacterized. To define the role of Toll-like receptor (TLR) signaling in control of a model retroviral pathogen, Friend virus (FV), I generated mice in which the TLR signaling adapter Myd88 was selectively deleted in dendritic cell (DC) or in B cell lineages. Deletion of Myd88 in DCs had little effect on immune control of FV, while B cell specific deletion of Myd88 caused a dramatic increase in viral infectious centers and a significantly reduced antibody response, indicating that B cell-intrinsic TLR signaling plays a crucial role, while TLR signaling in DCs is less important. I then identified the single-stranded RNA sensing protein TLR7 as being required for antibody-mediated control of FV by analyzing mice deficient in TLR7. Remarkably, B cells in infected TLR7-deficient mice upregulated CD69 and CD86 early in infection, but failed to develop into germinal center B cells. CD4 T cell responses were also attenuated in the absence of TLR7, but CD8 responses were TLR7 independent, suggesting the existence of additional pathways for detection of retroviral particles. Together these results demonstrate that the vertebrate immune system detects retroviruses in vivo via TLR7 and that this pathway regulates a key checkpoint controlling development of germinal center B cells.Massachusetts Institute of Technolog

    Toll Like receptor 7 regulates viral loads and cytokine secretion during acute retroviral infection

    Get PDF
    Background: Acute HIV infection is characterized by a high viremia accompanied by a powerful wave of pro-inflammatory cytokines that affects the subsequent course of infection and pathogenesis. Thus, understanding the mechanisms that regulate cytokine secretion and viremia is a key priority. The innate immune receptor TLR7 has been identified a retrovirus-sensing protein, and is expressed in several key immune lineages. In vitro data suggests that HIV can trigger TLR7-dependent innate immune responses, but TLR7s role in vivo is unclear

    Alienation: The Case of the Catholics in Northern Ireland

    Get PDF

    A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    Get PDF
    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique

    Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    Get PDF
    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera

    Virus-host interactions: new insights from the small RNA world

    Get PDF
    RNA silencing has a known role in the antiviral responses of plants and insects. Recent evidence, including the finding that the Tat protein of human immunodeficiency virus (HIV) can suppress the host's RNA-silencing pathway and may thus counteract host antiviral RNAs, suggests that RNA-silencing pathways could also have key roles in mammalian virus-host interactions

    Dendritic cell nediated inhibition of lentiviral infection

    Get PDF
    Lentiviral entry to quiescent lymphocytes represents a 'time bomb' waiting for cellular activation to spread infection. In order to undergo immune activation T cells interact with dendritic cells presenting peptide:MHC complexes 'sampling' them to look for agonist peptides and receiving survival signals from self peptides. This makes the dendritic cell:T cell interaction an ideal checkpoint to contain lentiviral infection of quiescent lypmhocytes

    New Concepts in Therapeutic Manipulation of HIV-1 Transcription and Latency: Latency Reversal versus Latency Prevention

    Get PDF
    Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir

    Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures

    Get PDF
    Specialized immune cell subsets are involved in autoimmune disease, cancer immunity, and infectious disease through a diverse range of functions mediated by overlapping pathways and signals. However, subset-specific responses may not be detectable in analyses of whole blood samples, and no efficient approach for profiling cell subsets at high throughput from small samples is available. We present a low-input microfluidic system for sorting immune cells into subsets and profiling their gene expression. We validate the system’s technical performance against standard subset isolation and library construction protocols and demonstrate the importance of subset-specific profiling through in vitro stimulation experiments. We show the ability of this integrated platform to identify subset-specific disease signatures by profiling four immune cell subsets in blood from patients with systemic lupus erythematosus (SLE) and matched control subjects. The platform has the potential to make multiplexed subset-specific analysis routine in many research laboratories and clinical settings.National Institute of Allergy and Infectious Diseases (U.S.) (Grant U24 AI118668

    The role of pre-school quality in promoting resilience in the cognitive development of young children

    Get PDF
    The study reported here investigates the role of pre-school education as a protective factor in the development of children who are at risk due to environmental and individual factors. This investigation builds upon earlier research by examining different kinds of 'quality' in early education and tests the hypothesis that pre-schools of high quality can moderate the impacts of risks upon cognitive development. Cognitive development was measured in 2857 English pre-schoolers at 36 and 58 months of age, together with 22 individual risks to children's development, and assessments were made of the quality of their pre-school provision. Multilevel Structural Equation Modelling revealed that: the global quality of pre-school can moderate the effects of familial risk (such as poverty); the relationships between staff and children can moderate the effects of child level risk (such as low birth weight); and the specific quality of curricular provision can moderate the effects of both. Policy makers need to take quality into account in their efforts to promote resilience in young 'at risk' children through early childhood services
    corecore