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Abstract

The development of vaccines that can enhance immunity to viral pathogens is an important goal. However, the innate
molecular pathways that regulate the strength and quality of the immune response remain largely uncharacterized. To
define the role of Toll-like receptor (TLR) signaling in control of a model retroviral pathogen, Friend virus (FV), I generated
mice in which the TLR signaling adapter Myd88 was selectively deleted in dendritic cell (DC) or in B cell lineages. Deletion of
Myd88 in DCs had little effect on immune control of FV, while B cell specific deletion of Myd88 caused a dramatic increase in
viral infectious centers and a significantly reduced antibody response, indicating that B cell-intrinsic TLR signaling plays a
crucial role, while TLR signaling in DCs is less important. I then identified the single-stranded RNA sensing protein TLR7 as
being required for antibody-mediated control of FV by analyzing mice deficient in TLR7. Remarkably, B cells in infected
TLR7-deficient mice upregulated CD69 and CD86 early in infection, but failed to develop into germinal center B cells. CD4 T
cell responses were also attenuated in the absence of TLR7, but CD8 responses were TLR7 independent, suggesting the
existence of additional pathways for detection of retroviral particles. Together these results demonstrate that the vertebrate
immune system detects retroviruses in vivo via TLR7 and that this pathway regulates a key checkpoint controlling
development of germinal center B cells.
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Introduction

The retrovirus family includes several human pathogens, such

as HIV-1, HIV-2 and HTLV-1, for which no effective vaccine

exists [1,2,3]. Efforts to induce broadly neutralizing antibodies

against HIV-1 by vaccination with monomeric gp120 have

produced disappointing results for reasons that are not entirely

clear [4]. The high mutation rate of the envelope glycoprotein,

and glycosylation of neutralizing epitopes, are likely contributing

factors [5,6]. Early during natural HIV-1 infection, abundant

antibodies to gp120 are produced but these fail to neutralize the

virus. Some individuals eventually produce broadly neutralizing

antibodies, but these typically arise too late to be of clinical benefit

[7]. Vaccines for other viruses, such as influenza, face similar issues

of viral diversity and mutation. Thus, identifying ways to improve

the speed and quality of the antibody response to infection and

vaccination is a key priority. Specifically, it will be crucial to

identify host genetic pathways that contribute to the development

of anti-viral neutralizing antibodies and to develop strategies that

target these pathways.

Over the past decade it has become clear that the innate

immune system is an important contributor to the activation and

fine-tuning of adaptive immune responses, but the precise details

of how these pathways contribute are still unclear for most

pathogens [8]. In particular, the identity of proteins that ‘sense’ the

presence of viral particles and the details of how they shape

adaptive immunity will need to be elucidated [9]. Innate sensors of

microbial infection fall into three basic classes, NOD like receptors

(NLRs), RIG-I like receptors (RLRs) and Toll-like receptors

(TLRs). Each family consists of several members that have

specialized functions. Mice deficient in individual pathogen-

sensing proteins have been constructed in several laboratories

and have been analyzed for effects on innate and adaptive

immunity to viral pathogens [10].

Our knowledge of how innate sensing pathways regulate

adaptive immunity to HIV-1 has been hampered by the lack of

a genetically modifiable animal model for HIV-1 infection. HIV-1

infection of murine cells is blocked at multiple steps in the viral

replication cycle [11]. Friend virus (FV) is a murine gammare-

trovirus that has been widely used as a model to understand basic

principles of retroviral immunology [12]. FV consists of a

replication-competent virus (F-MLV) and a defective spleen

focus-forming virus (SFFV). Infection of C57BL/6 mice with FV

induces a potent CD8 T cell and antibody response that controls

the initial infection, although the mice eventually develop a low-

level persistent infection [13]. This system thus allows the

application of the powerful tools of mouse genetics to the question

of how innate immune pathways regulate adaptive immunity to

retroviral pathogens.

It was recently shown that mice deficient in the TLR adapter

Myd88 exhibit a profound deficit in immune control of FV, and

mount an attenuated antibody response to the virus, indicating

that a member of the TLR family is involved in antibody-mediated

immune control [14]. However, the identity of the specific TLR

that detects FV, and the cell lineages where its signaling is

required, are unknown. I sought to identity the cell lineage specific
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requirements for Myd88 expression in the anti-FV antibody

response, and to identify individual TLR family members that

contribute to retroviral immunity. The data revealed that B cell-

intrinsic Myd88 and TLR7 play a key role in the antibody

response to infection, and that they regulate the development of

germinal center B cells. Since germinal center reactions are a key

process that controls the quality of the antibody response, these

finding have broad significance for understanding the immune

response to viruses with RNA genomes, and the design of vaccine

vectors.

Methods and Materials

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. These

studies were approved by the Committee on Animal Care of the

Massachusetts Institute of Technology (protocol #0709-088-12).

Mice
Myd88 knockout mice were originally derived in the laboratory

of Shizuo Akira (Osaka). All other mice were purchased from The

Jackson Laboratory (Bar Harbor). The specific strain/stock

numbers for the mice were: C57BL/6 (000664), BALB/c

(00651), TLR7-deficient mice: B6.129S1-Tlr7tm1Flv/J (008380),

Floxed Myd88 allele mice: B6.129P2(SJL)-Myd88tm1Defr/J

(008888), CD19-cre: B6.129P2(C)-Cd19tm1(cre)Cgn/J (006785),

and CD11c-cre: C57BL/6J-Tg(Itgax-cre,-EGFP)4097Ach/J

(007567). All knockout and transgenic strains had been back-

crossed to a C57BL/6 background for multiple generations.

Virus stocks and infections
All infections were carried out on mice at 6–8 weeks of age. A

stock of Lactate dehydrogenase-elevating virus (LDV) free FV was

obtained from Kim Hasenkrug (NIAID). Stocks of FV were

prepared by retro-orbital infection of BALB/c mice and

harvesting spleens at 8 dpi. 10% spleen homogenates were

prepared and stored at 280uC. The virus stock was confirmed

to be free of LDV and other pathogens by PCR screening.

Virus stocks and experimental samples were quantified by focus-

forming assay. Serial dilutions of splenocytes were plated on Mus

dunni cells in RPMI media. Two days later, cells were fixed in

ethanol and stained with the FV envelope-specific monoclonal

antibody mAb720 [15] (generous gift from Kim Hasenkrug,

NIAID) then with anti-IgG1 horseradish peroxidase (BD Phar-

mingen). Foci were developed with aminoethyl-carbazole substrate

in a 0.1 M sodium citrate buffer with hydrogen peroxide. For

experimental infections, mice were dosed with 10000 focus-

forming units of FV by retro-orbital injection.

Antibody assays
To determine FV envelope-specific antibody levels in mice, I

obtained serum by eyebleed. To measure total anti-FV Ig levels,

I used serum diluted 1:10 in phosphate buffered saline (PBS) to

stain a chronically F-MLV and SFFV-infected rat kidney cell

line that abundantly expresses the FV envelope protein

(Generous gift of Leonard Evans, NIAID). These cells were

then washed and stained with an allophycocyanin conjugated

polyclonal anti-IgG(H+L) antibody (ebiosciences) and analyzed

by flow cytometry on an Accuri C6 flow cytometer. To measure

neutralizing antibody levels, I performed a standard neutraliza-

tion assay: 50 focus-forming units of virus was incubated with

serum from infected mice over a range of dilutions at room

temperature for 30 mins. The samples were then plated on Mus

dunni cells, and the number of foci counted at 2 dpi. The

neutralizing potency of the serum was defined as the maximum

serum dilution capable of reducing the number of foci by 50%

or greater.

Cell staining and flow cytometry
For staining of mouse splenocytes, a single-cell suspension was

generated and erythrocytes removed by hypotonic lysis. Cells were

stained in PBS with 2% FBS at 4uC for 30 minutes, then washed

with PBS and fixed in 2% paraformaldehyde for 20 minutes.

Samples were analyzed on an Accuri C6 flow cytometer. For

intracellular IFNc staining, cells were first restimulated for 3 h in

PMA/ionomycin, permeabilized and fixed in Perm/Fix buffer

(BD Pharmingen), then washed in Perm/Wash buffer and stained

with anti-IFNc-FITC. Other antibodies used were: aCD19-FITC,

aCD19-PercpCy5.5, aCD69-FITC, aPD1-PE, aGL7-Alexa-647,

aTCRb-APC, aCD4-PercPCy5.5, aCD8-PE, and aIgM-PE (all

from ebiosciences). H2Db-GagL-PE tetramer was obtained from

Beckman-Coulter. All stainings were performed in the presence of

an Fc blocking antibody (ebiosciences).

Histology
Mouse spleens were fixed in 4% paraformaldehyde overnight,

then embedded in paraffin. 4 mm Sections were cut and mounted

on glass slides, then stained with hematoxylin and alcoholic eosin

solutions for 1 minute each. The stained sections were then

overlaid with a 90% glycerol solution and coverslips before

microscopic analysis.

Statistical analyses
P values for experiments were determined by Student’s t test,

except for viral titers, which were analyzed by the Mann-Whitney

method.

Accession numbers
TLR7: CAM14953

Myd88: AAC53013

Author Summary

Viral infection triggers potent pathogen-specific immune
responses involving antibodies that neutralize viral parti-
cles and CD8 T cells that directly kill infected cells. Vaccines
also trigger immune responses, but current vaccines for
retroviruses such as HIV-1, are inadequate. Defining the
genes and pathways that regulate this response will
identify new targets for therapies that can enhance the
immune response to infection or to prophylactic vaccines.
Using mouse genetics, I have demonstrated that a host
protein, Toll-like receptor seven (TLR7) recognizes retrovi-
ruses and regulates the antibody response to infection.
TLR7 is a member of an ancient family of genes that detect
microbes and initiate inflammation, but its role in antibody
responses has not been clearly defined. I have discovered
that TLR7 controls a specific step in the antibody response
called the germinal center reaction. Germinal centers
regulate the development of antibodies that protect
against viral infection, and manipulation of TLR7 and its
signaling pathway in B cells could be a viable strategy for
enhancing immunity to viruses.

TLR7 Controls the Antibody Response to Retrovirus
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Results

B cell-intrinsic TLR signaling is required for control of FV
FV infection leads to an acute viremia that peaks at 7–8 days

post infection, but is brought under control by potent CD8 T cell

and B cell responses by 14 dpi in resistant strains of mice [12].

The TLR adapter Myd88 is required for the generation of a

potent serum immunoglobulin (Ig) response to the virus [14].

Since Myd88 is widely expressed in the vertebrate immune

system and also in non-immune lineages [16], the requirement

for Myd88 in the antibody response to FV could reflect its

activity in any or several of these cell types. I examined the role

of TLR signaling in two immune lineages known to contribute to

anti-FV antibody responses - dendritic cells (DCs) and B cells.

Dendritic cells (DCs) are required for the development of FV-

specific antibodies [14], and express a number of different TLRs.

Murine B cells also highly express several TLRs, including

TLR4, TLR7, and TLR9. To define the cell-intrinsic require-

ments for Myd88 further, I crossed mice containing a ‘floxed’

allele of Myd88 with strains that express the Cre recombinase

selectively in dendritic cells (CD11c-Cre) or in B cells (CD19-

Cre). The ‘floxed’ Myd88 allele mice have been previously used

to demonstrate the DC-intrinsic requirement for TLR signaling

in control of Salmonella [17].

To determine whether DC or B cell-intrinsic Myd88 expression

is required for control of FV infection, I infected the conditionally

deleted mouse strains with FV. Consistent with previous findings

[14], germline Myd88-deficient mice exhibited dramatically

elevated numbers of viral infectious centers at 14 dpi (Fig. 1).

Surprisingly, mice with Myd88 selectively deleted in DCs (CD11c-

Cre/Myd88flox/2) showed only a small increase in infectious

centers at 14 dpi, suggesting that DC-intrinsic TLR signaling

makes only a minor contribution to control of FV. By contrast,

mice with Myd88 deleted in B cells (CD19-Cre/Myd88flox/2)

exhibited a profound defect in control of FV, and had dramatically

higher numbers of infectious centers than non-deleted mice (Fig. 1).

These results indicate that B cell-intrinsic TLR signaling plays an

essential role in the control of FV, while DC-intrinsic TLR

signaling is less important.

B cell-intrinsic Myd88 is required for an antibody
response to FV

The high levels of viral foci observed in mice with B cell specific

deletion of Myd88 could reflect a requirement for B cell-intrinsic

Myd88 in the antibody response, or it could reflect an antibody-

independent role for B cell-intrinsic Myd88 in control of FV. To

determine whether conditional deletion of Myd88 in DCs or B

cells affected the antibody response to FV, I measured total FV-

specific Ig levels in the serum of infected mice with Myd88 deleted

in DCs or in B cells at 14 dpi. Mice with Myd88 deleted in DCs

showed a small reduction in antibody titers at 14 dpi compared to

non-deleted littermate2 mice (Fig. 2), but this reduction was not

statistically significant. By contrast, mice with Myd88 deleted in B

cells showed a strong reduction in antibody levels compared to

undeleted littermate mice. These data demonstrate that B cell-

intrinsic Myd88 plays a direct role in the regulation of the

antibody response to FV.

TLR7 is required for an antibody response to FV
Myd88 mediates signaling from all members of the TLR family

except TLR3, as well as signaling from IL1R and IL18R [18,19].

Each member of this family has a specialized function relating to

the recognition of conserved molecular patterns found on

microbes. TLR7 and TLR9 have been shown to respond to

single stranded RNA (ssRNA) and double stranded DNA (dsDNA)

elements respectively, while TLR4 responds to lipopolysaccharide

and oxidized phospholipids [20,21,22]. Since retroviruses have

ssRNA genomes that could stimulate TLR7 [23], and TLR7 is

abundantly expressed in B cells, I hypothesized that TLR7

regulates the antibody response to FV. To test this hypothesis, I

infected wild-type and TLR7-deficient mice with FV and

measured viral infectious centers at 14 dpi. Wild-type mice

exhibited low numbers of infectious centers at 14 dpi, consistent

Figure 1. B cell-intrinsic TLR signaling is required for control of
FV. Mice that were heterozygous (+/2) or knockout (2/2) for Myd88,
and mice with Myd88 deleted in DCs (CD11c-Cre/Myd88flox/2) or B cells
(CD19-Cre/Myd88flox/2) were infected with FV, and viral infectious
centers were determined at 14dpi by measuring focus-forming units
per spleen. Each bar represents an average of 6–10 mice.
doi:10.1371/journal.ppat.1002293.g001

Figure 2. B cell-intrinsic TLR signaling is required for an
antibody response to FV. Myd88 germline heterozygous mice (+/2)
and mice with Myd88 deleted in DCs (CD11c-Cre/Myd88flox/2) or B cells
(CD19-Cre/Myd88flox/2) were infected with FV, and FV-specific Ig levels
in the serum determined at 14 dpi by staining of envelope expressing
cells and flow cytometry. Units represent the mean fluorescence
intensity (MFI) of cells stained with diluted serum, followed by
allophycocyanin conjugated. anti-mouse IgG(H+L). Each dot represents
an individual mouse.
doi:10.1371/journal.ppat.1002293.g002

TLR7 Controls the Antibody Response to Retrovirus
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with previous observations (Fig. 3A). By contrast, TLR7-deficient

mice exhibited dramatically higher levels of infectious centers,

indicating a significant defect in immune control of FV. This

demonstrates that TLR7 is indeed a key host factor that regulates

control of retroviral infection in vivo.

To determine whether TLR7 regulates the antibody response to

FV, I measured total FV-specific Ig levels in the serum of infected

wild-type or TLR7-deficient mice at 14 dpi. As expected, wild-

type mice exhibited a robust serum FV-specific Ig response to FV

at 14 dpi (Fig. 3B). Notably, TLR7-deficient mice exhibited a

profoundly attenuated antibody response to FV. Myd88 and

TLR7 deficient mice exhibited similarly low levels of FV-specific

Ig, indicating that a lack of TLR7 signaling likely accounts for the

defect observed in Myd88 knockout mice. Together, these results

identify TLR7 as a key regulator of the antibody response to

retroviral infection.

I also confirmed the effect of B cell-intrinsic Myd88 and TLR7

on the antibody response to FV by performing neutralization

assays using serum from infected wild-type mice, TLR7-deficient

mice, or mice with Myd88 deleted in B cells (Fig. 4). Serum from

wild-type mice was able to potently neutralize FV samples in vitro.

By contrast, serum from TLR7-deficient mice or mice with Myd88

deleted in B cells exhibited significantly attenuated neutralizing

ability.

B cells upregulate CD86 and CD69 early during infection
independently of TLR7

Antibody responses to viral infection are regulated by a network

of cells and signaling pathways, including dendritic cells (DCs),

CD4 T cells and B cells. Naı̈ve B cells interact with viral antigen

through the B cell receptor (BCR), and with CD4 T cells through a

number of cell surface molecules, including CD40. Activation

initially results in the upregulation of markers such as CD69 and

CD86. Activated B cells can then develop into germinal center

(GC) B cells with the assistance of CD4 T cells [24]. To determine

whether early activation of B cells is regulated by TLR7, I

examined expression of CD69 and CD86 on B cells at 7 dpi. To

rule out potential FV independent effects from the spleen

homogenate used for infection, I compared infected mice to mice

dosed with an equivalent amount of spleen homogenate from an

uninfected mouse. B cells in infected mice upregulated expression

of CD69 and CD86 at 7 dpi in wild-type infected mice, indicating

that B cell activation is occurring (Fig. 5). Interestingly, this

upregulation also occurred in TLR7-deficient mice. This suggests

that in vivo activation of B cells does not require TLR7, and

indicates that this early activation is triggered by a TLR7

independent signaling pathway.

TLR7 regulates the formation of germinal center B cells
during FV infection

Since early activation of B cells was apparently normal in

infected TLR7-deficient mice, I hypothesized that TLR7 regulates

a later step in the antibody response, such as the development of

germinal center B cells. Germinal center B cells upregulate

expression of GL7 and undergo Activation Induced Deaminase

(AID) dependent somatic hypermutation and switching to non-

IgM isotypes [25,26,27]. This process thus contributes the

development of affinity-matured and class switched neutralizing

antibodies [28]. To address the role of TLR7 in GC reactions, I

analyzed the development of germinal center B cells during FV

infection in wild-type and TLR7-deficient mice by flow cytometry.

At 14 dpi infection B cells in wild-type mice had upregulated

the germinal center marker GL7, and had developed a significant

population of non-IgM B cells, indicating that class switching and

germinal center reactions were occurring (Fig. 6). In TLR7-

deficient mice, by contrast, the level of GL7+ and non-IgM B cells

were significantly lower. I also examined the germinal centers in

the spleens of infected mice by histology. Wild-type infected mice

exhibited abundant germinal center structures by 14 dpi, while in

the TLR7-deficient mice, germinal centers were significantly

reduced (Fig. 7). These results suggest that TLR7 signaling

regulates a post-activation checkpoint that controls the formation

or maintenance of germinal center B reactions during FV

infection.

Figure 3. TLR7 is required for an antibody response to FV. A.
Wild-type (WT) or TLR7 deficient mice (Tlr7 KO) were infected with FV.
At 14 dpi, spleens from infected mice were harvested and the number
of infectious focus-forming units per spleen was measured by focus-
forming assay. Each bar represents the average of 6 mice. B. The levels
of FV-specific Ig in the serum of infected and uninfected mice were
measured by staining of an envelope expressing cell line and flow
cytometry. Units represent the mean fluorescence intensity (MFI) of
cells stained with diluted serum, followed by allophycocyanin
conjugated. anti-mouse IgG(H+L). Each dot represents an individual
mouse. The average is shown as a horizontal black bar.
doi:10.1371/journal.ppat.1002293.g003

Figure 4. TLR7 and B cell-intrinsic Myd88 are required for a
neutralizing antibody response. Serum from infected wild-type
(WT) or TLR7-deficient mice (Tlr7 KO) (A), as well as mice with Myd88
deleted in B cells (CD19-Cre/Myd88flox/2) (B), was diluted over a wide
range and incubated with a defined quantity of infectious FV. The effect
of the serum on the infectivity of the sample was then measured by
focus-forming assay. The neutralizing antibody (NAb) titer was defined
as the maximum serum dilution that reduced the infectivity of the virus
sample by at least 50%. Each dot represents an individual mouse.
doi:10.1371/journal.ppat.1002293.g004

TLR7 Controls the Antibody Response to Retrovirus
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TLR7 regulates IFNc expression in the CD4 but not the
CD8 T cell response

Since CD4 T cells are important regulators of germinal center

responses, the attenuated germinal response to FV in TLR7-

deficient mice could reflect defective CD4 T cell help. To examine

whether TLR7 was required for T cell responses during FV

infection, wild-type or TLR7-deficient mice were infected with

FV, and at 14 dpi, the expression of IFNc in CD4 and CD8 T

cells was measured by intracellular cytokine staining. Wild-type

infected mice strongly upregulated IFNc expression in CD4 and

CD8 T cells, indicating a robust T cell response to FV.

Interestingly, IFNc upregulation in CD4 T cells was dependent

on TLR7 (Fig. 8A), while IFNc expression in CD8 T cells was

TLR7 independent (Fig. 8B). I also examined the FV-specific CD8

T cell response using an H2Db tetramer complexed with the FV

GagL peptide (Fig. 9A). I found that the development of GagL

specific CD8 T cells at 14 dpi was independent of TLR7. Since

TLR7 mice have significantly higher viral loads at 14 dpi than

wild-type mice, I examined whether the CD8 T cells of TLR7-

deficient mice exhibited higher levels of antigen-driven exhaustion

by staining for PD1 expression (Fig. 9B). Although I observed a

higher number of PD1+ CD8 T cells in TLR7 deficient mice

compared to wild-type mice, this difference was not statistically

significant. These data suggest that TLR7 selectively affects

pathways that regulate CD4 T cell responses, while TLR7-

independent pathways are sufficient for CD8 T cell activation.

Defective CD4 T cell function in TLR7-deficient mice could

contribute to the inadequate antibody response and the reduced

germinal center response.

B cell-intrinsic Myd88 regulates germinal center B cells
but not IFNc expression in CD4 T cells

Since, B cell-intrinsic Myd88 is important for the antibody

response I wished to determine whether B cell-intrinsic Myd88

was required for either germinal center responses or CD4 T cell

Figure 5. B cells upregulate CD86 and CD69 independently of
TLR7. Wild-type (WT) or TLR7-deficient mice were infected with FV. At
7 dpi, splenocytes were harvested and the levels of CD86 (A) and CD69
(B) expression determined for B cells (CD19+) by flow cytometry. A
representative flow cytometry plot for the CD19+ gated cells for each
group is shown. Each bar of the histogram represents the average of 5–
6 mice. Control ‘naı̈ve’ mice were inoculated with an equivalent dose of
spleen homogenate without FV.
doi:10.1371/journal.ppat.1002293.g005

Figure 6. TLR7 is required for the development of germinal
center B cells during FV infection. Wild type (WT) or TLR7-deficient
mice (Tlr7 KO) were infected with FV. At 14 dpi, splenocytes were
harvested and analyzed for the presence of germinal center B cells by
flow cytometry. The percentage of B cells that were (A) CD19+, GL7+ or
(B) CD19+, IgM2 were measured and plotted. A representative plot for
the CD19+ gated cells for each group is shown. Each bar of the
histogram represents the average of 5–6 mice.
doi:10.1371/journal.ppat.1002293.g006

Figure 7. Histological analysis of germinal center formation
during FV infection. Spleens were harvested from FV-infected wild-
type (WT) or TLR7 deficient (Tlr7 KO) mice at 14 dpi, embedded in
paraffin, and sectioned onto glass slides. Sections were stained with
hematoxylin and eosin. Germinal centers (GCs) were identified by their
characteristic staining pattern of a paler central circular area (indicated
by arrows) surrounded by a darker mantle zone and marginal zone. Five
mice for each group were analyzed, and four non-consecutive sections
were analyzed for each mouse.
doi:10.1371/journal.ppat.1002293.g007

TLR7 Controls the Antibody Response to Retrovirus
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IFNc expression. I examined GL7 expression in splenic B cells

during FV infection of heterozygous mice or mice with Myd88

selectively deleted in B cells at 14 dpi (Fig. 10A). I also examined

CD4 T cell IFNc expression in these mice by intracellular cytokine

staining at 14 dpi (Fig. 10B). Interestingly, I found that GL7

expression was significantly reduced in infected mice with B cell

deleted Myd88, while IFNc expression was unaffected. This

demonstrates that B cell-intrinsic Myd88 is required for germinal

center responses but not for IFNc expression in CD4 T cells. Thus

it is possible that TLR7 signaling in a cell lineage other than B cells

regulates CD4 T cell expression of IFNc.

Discussion

In this study I present evidence that B cell-intrinsic Myd88

expression and TLR7 are key regulators of the germinal center

response to a retroviral pathogen, FV. TLR7-deficient mice fail to

develop a potent serum antibody response after infection with FV,

and this correlates with a significant reduction in the formation of

GL7+ germinal center B cells. Since TLR7 is abundantly

expressed in B cells, it is likely that these results reflect a B cell-

intrinsic requirement for TLR7, although I cannot yet rule out the

possibility that other cell lineages contribute to TLR7-mediated

control of FV, or that other TLRs contribute to B cell-intrinsic

recognition of FV. Indeed, since IFNc expression in CD4 T cells

was defective in TLR7 deficient mice but not in mice lacking B

cell-intrinsic Myd88, it is likely that this response is regulated in

part by B cell extrinsic TLR7 signaling.

The issue of whether TLRs contribute to B cell responses has

been controversial. Pasare and coworkers reported that B cell-

deficient mice reconstituted with B cells from Myd88 knockout

mice had reduced antibody responses to OVA with LPS [29]. This

finding was challenged by other groups that found apparently

normal antibody responses to trinitrophenol-hemocyanin with

Complete Freund’s Adjuvant in mice with defective TLR signaling

[30,31]. The results presented in this study strongly support the

hypothesis that B cell-intrinsic TLR signaling can regulate

antibody responses, and also suggest that this process specifically

regulates the development of germinal centers during viral

infection. I also found that DC-intrinsic TLR signaling makes

only a minor contribution to the anti-retroviral antibody response.

Previous work has shown that deletion of CD11c+ DCs with

diphtheria toxin causes a dramatic attenuation of the antibody

response to FV [14], demonstrating that CD11c+ DCs make an

essential contribution of the antibody response. I therefore

speculate that a TLR-independent innate pathway contributes to

the role of DCs in the immune response to FV. This notion is

supported by my observation that the CD8 T cell response to FV,

which is regulated by CD11c+ dendritic cells, is TLR7

Figure 8. TLR7 is required for IFNc expression in CD4 T cells.
Wild-type (WT) and TLR7 deficient (Tlr7 KO) mice were infected with FV.
At 14 dpi, splenocytes were harvested, restimulated for 3 h with PMA/
ionomoycin, and analyzed by flow cytometry for intracellular expression
of IFNc in (A) CD4 T cells (TCRb+, CD4+) and (B) CD8 T cells (TCRb+,
CD8+). A representative flow cytometry plot for the T cell gated cells for
each group is shown. Each bar of the histogram represents the average
of 5–6 mice.
doi:10.1371/journal.ppat.1002293.g008

Figure 9. The FV-specific CD8 T cell response is independent of
TLR7. Wild-type (WT) or TLR7 deficient mice (Tlr7 KO) were infected
with FV. At 14 dpi, splenocyte suspensions were analyzed by flow
cytometry with an H2Db-GagL tetramer (A), or with an antibody to
detect PD1 expression (B). Flow cytometry plots are gated on TCRb+,
CD8+ T cells. Each bar of the histogram represents the average of 5–6
mice.
doi:10.1371/journal.ppat.1002293.g009

Figure 10. B cell-intrinsic Myd88 regulates germinal center B
cells but not CD4 T cell IFNc expression. Heterozygous mice
(CD19-Cre/Myd88+/2) or mice with B cell specific deletion of Myd88
(CD19-Cre/Myd88flox/2) were infected with FV, At 14 dpi, splenocytes
suspensions were analyzed by flow cytometry for GL7 expression in
CD19+ B cells (A) and for IFNc expression in CD4+, TCRb+ T cells (B).
Each bar represents the average of four mice.
doi:10.1371/journal.ppat.1002293.g010
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independent. The TLR7 independent innate signaling pathway

that regulates to the CD8 T cell IFNc response is unknown.

Recent work by other laboratories examining the role of TLR

signaling in the antibody response to influenza and model antigens

have also indicated that B cell-intrinsic TLR activation controls

germinal center responses [32,33,34,35]. Also, B6.Yaa mice,

which contain a duplicated Tlr7 gene, display enhanced germinal

center and antibody responses to immunization [36]. Thus, a

requirement for B cell-intrinsic TLR7 signaling may be a general

feature of the antibody response to viruses with RNA genomes.

Targeted delivery of TLR agonists to B cells with synthetic nano-

particles may enhance germinal center responses [33].

Determining how TLR7 regulates the development of germinal

center B cells during viral infection should be an area of further

investigation. TLR7 stimulation by viral RNA may directly

regulate the expression of a set of transcription factors or genes

that promote the initiation of germinal center reactions and

immunoglobulin class switching, such as Activation Induced

Deaminase (AID) [37]. Alternatively, it may regulate expression

of cytokines that mediate autocrine effects on B cells [38]. TLR7

may also regulate the maintenance of GC responses by stimulating

ongoing proliferation or survival of GC B cells.

Germinal center B cells are known to be regulated by a

specialized population of CD4+ T cells called ‘‘follicular helper’’

cells (Tfh) [24]. Tfh cells are in turn negatively regulated by

CD44+, CD122+ CD8+ regulatory cells, by a mechanism that

requires IL15 expression [36,39]. It is possible that TLR7

signaling acts by either promoting Tfh proliferation or function,

or by interfering with CD8 Treg repression of Tfh cells. Previous

data have suggested that CD4+ CD25+ regulatory T cells are

deactivated by TLR stimulation of dendritic cells, via a

mechanism involving IL6 [40]. As such, a similar regulatory

model could apply to inhibition of antibody responses by CD8+
regulatory T cells; TLR7 activation by viral RNA may promote

antibody responses via a secondary effect on CD8+ Tregs.

Our data also suggest the existence of a novel uncharacterized

retrovirus sensing pathway that controls CD8 T cell responses to

infection. The identity of this sensing pathway is unknown, and its

identification could have significant implications for understanding

CD8 T cell responses to human retroviral pathogens such as HIV-

1. It could involve reverse transcribed retroviral DNA being sensed

via DNA sensing proteins such as ZBP1 [41], or viral RNA being

detected by RIG-I [42]. Although RIG-I detects 59 triphosphates,

and the 59 ends of retroviral RNAs are typically modified by a 59

methyl-guanosine cap, it has recently been shown that cytosolic

dsDNA can serve as a template for the generation of short RNAs

that can trigger RIG-I [43,44]. It has also recently been shown

that HIV-1 Gag expression can, in the presence of vpx from SIV,

promote maturation of human monocyte derived dendritic cells,

although it is unclear if this pathway contributes to natural

immunity to HIV-1 [45]. FV infected cells were also recently

shown to express the NKG2D ligand Rae-1 [46]. The cytidine

deaminase Apobec3 has also been shown to modulate B cell

responses to FV [47], although this is most likely through an

indirect mechanism [48,49].

The finding that TLR7 and B cell-intrinsic Myd88 regulate the

antibody response to a retroviral pathogen by promoting the

development of germinal center B cells has potentially significant

implications for understanding mechanisms behind the antibody

response to human retroviral pathogens such as HIV-1 and

HTLV-1. The initial antibody response to HIV-1 is rapid but not

neutralizing, followed by autologous neutralizing antibody re-

sponse and viral escape. In a minority of patients, broadly

neutralizing antibodies eventually develop but often not until 2–3

years post infection [7]. Interestingly, the development of broadly

neutralizing antibodies has been shown to correlate with higher

viral titers and with higher expression of the Tfh cell marker PD1

in CD4 T cells [7]. HIV-1 envelope protein has been shown to

disrupt TLR7 activation in DCs by inhibiting the formation of

autophagic vesicles that deliver viral TLR7 ligands to endosomes

[50]. It is thus possible that HIV-1 suppression of TLR7 activation

could affect the antigen-specific antibody response to HIV-1.

Conversely, non-specific stimulation of B cells via TLR7 could

contribute to polyclonal B cell activation and exhaustion during

HIV-1 infection [51]. A key area of investigation for future studies

will be to identify host factors that contribute specifically to the

breadth on the anti-envelope antibody response as opposed to total

level of antibodies.

Additional note
While this manuscript was in revision, another group reported

findings that confirm the role of TLR7 in the antibody response to

murine retroviral infection [52].
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