2,294 research outputs found

    Symmetries, Horizons, and Black Hole Entropy

    Full text link
    Black holes behave as thermodynamic systems, and a central task of any quantum theory of gravity is to explain these thermal properties. A statistical mechanical description of black hole entropy once seemed remote, but today we suffer an embarrassment of riches: despite counting very different states, many inequivalent approaches to quantum gravity obtain identical results. Such ``universality'' may reflect an underlying two-dimensional conformal symmetry near the horizon, which can be powerful enough to control the thermal characteristics independent of other details of the theory. This picture suggests an elegant description of the relevant degrees of freedom as Goldstone-boson-like excitations arising from symmetry breaking by the conformal anomaly.Comment: 6 pages; first prize essay, 2007 Gravity Research Foundation essay contes

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex

    GPS observables in general relativity

    Get PDF
    I present a complete set of gauge invariant observables, in the context of general relativity coupled with a minimal amount of realistic matter (four particles). These observables have a straightforward and realistic physical interpretation. In fact, the technology to measure them is realized by the Global Positioning System: they are defined by the physical reference system determined by GPS readings. The components of the metric tensor in this physical reference system are gauge invariant quantities and, remarkably, their evolution equations are local.Comment: 6 pages, 1 figure, references adde

    Instanton--anti-instanton pair induced contributions to Re+ehadronsR_{e^+e^-\to hadrons} and RτhadronsR_{\tau \to hadrons}

    Full text link
    The instanton--anti-instanton pair induced asymptotics of perturbation theory expansion for the cross section of electron--positron pair annihilation to hadrons and hadronic width of τ\tau-lepton was found. For Nf=NcN_f = N_c the nonperturbative instanton contribution is finite and may be calculated without phenomenological input. The instanton induced peturbative asymptotics was shown to be enhanced as (n+10)!(n+10)! and in the intermediate region n<15n<15 may exceed the renormalon contribution. Unfortunately, the analysis of 1/n\sim 1/n corrections shows that for n10n \sim 10 the obtained asymptotic expressions are at best only the order of magnitude estimate. The asymptotic series for Re+ehadronsR_{e^+ e^- \rightarrow hadrons} , though obtained formally for Nf=NcN_f =N_c, is valid up to energies 15\sim 15Gev. The instanton--anti-instanton pair nonperturbative contribution to RτhadronsR_{\tau \rightarrow hadrons} blows up. On the one hand, this means that instantons could not be considered {\it ab--initio} at such energies. On the other hand, this result casts a strong doubt upon the possibility to determine the αs\alpha_s from the τ\tau--lepton width.Comment: 22 pages, latex, no figure

    Aligning archive maps and extracting footprints for analysis of historic urban environments.

    Get PDF
    Archive cartography and archaeologist's sketches are invaluable resources when analysing a historic town or city. A virtual reconstruction of a city provides the user with the ability to navigate and explore an environment which no longer exists to obtain better insight into its design and purpose. However, the process of reconstructing the city from maps depicting features such as building footprints and roads can be labour intensive. In this paper we present techniques to aid in the semi-automatic extraction of building footprints from digital images of archive maps and sketches. Archive maps often exhibit problems in the form of inaccuracies and inconsistencies in scale which can lead to incorrect reconstructions. By aligning archive maps to accurate modern vector data one may reduce these problems. Furthermore, the efficiency of the footprint extraction methods may be improved by aligning either modern vector data or previously extracted footprints, since common elements can be identified between maps of differing time periods and only the difference between the two needs to be extracted. An evaluation of two alignment approaches is presented: using a linear affine transformation and a set of piecewise linear affine transformations

    Microstructural characterisation of biocompatible sol-gel derived vanadium doped TiO2 on Ti substrates

    Get PDF
    Sol-gel derived pure titania is compared with vanadium and / or aluminium modified titania deposited by spin coating on pure titanium substrates annealed at 300C and 650C. Reflection high-energy electron diffraction indicated the presence of anatase from the surface layers of samples annealed at 300C with a transition to rutile with increasing annealing temperature and addition of vanadium. Cross-sectional transmission electron microscopy indicated a gradation of Ti-O phases through the layer with the dominant presence of rutile. Aluminium was found to inhibit grain growth while vanadium promoted crystallisation

    Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source

    Full text link
    Intrinsic time-dependent invariants are constructed for classical, flat, homogeneous, anisotropic cosmology with a massless scalar material source. Invariance under the time reparameterization-induced canonical symmetry group is displayed explicitly.Comment: 28 pages, to appear in General Relativity and Gravitation. Substantial revisions: added foundational overview section 2, chose new intrinsic time variable, worked with dimensionless variables, added appendix with comparison and criticism of other approache

    High-speed narrow-bore capillary gas chromatography in combination with a fast and double-focusing mass spectrometer

    Get PDF
    In this work the application of high-speed narrow-bore capillary GC in combination with a fast scanning double focusing magnetic sector mass spectrometer is evaluated. Special emphasis is placed upon detection limits and scan speed in the full scan mode and in the selected ion monitoring mode (SIM). In the full scan mode, up to 20 scans per second could be obtained. The detection limits are in the low picogram range in the full scan mode and improve even to 5 to 50 fg in the SIM mode, depending on the sample complexity and mass resolving power. It will be illustrated that by increasing the resolution in the SIM mode, interferences from ions of the same nominal mass-to-charge ratio as the ions of interest are significantly reduced. Chemical background noise can therefore be largely eliminated, thus enhancing the signal-to-noise ratio

    Energy Distribution in f(R) Gravity

    Full text link
    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.Comment: 15 pages, accepted for publication in Gen. Relativ. & Gra

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics
    corecore