560 research outputs found

    Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR

    Get PDF
    Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13^{13}C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.This work was part supported by BBSRC Grant BB/G016240/1 via The BBSRC Sustainable Bioenergy Cell Wall Sugars Programme. ODB and ERdA are grateful to CNPq for financial support for this work via Grants # 159341/2011-6 and 206278/2014-4. ACP is grateful to the Royal Society for a Newton International Fellowship. PD is supported by the Leverhulme Trust grant for the Centre for Natural Material Innovation. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC, as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). (Contract reference PR140003 for work after 5 January 2015). DFT calculations of NMR parameters were performed at the Centre for Scientific Computing at the University of Warwick

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness

    Get PDF
    Dopamine signaling is constrained to discrete tracts yet has brain-wide effects on neural activity. The nature of this relationship between local dopamine signaling and brain-wide neuronal activity is not clearly defined and has relevance for neuropsychiatric illnesses where abnormalities of cortical activity and dopamine signaling coexist. Using simultaneous PET-MRI in healthy volunteers, we find strong evidence that patterns of striatal dopamine signaling and cortical blood flow (an index of local neural activity) contain shared information. This shared information links amphetamine-induced changes in gradients of striatal dopamine receptor availability to changes in brain-wide blood flow and is informed by spatial patterns of gene expression enriched for genes implicated in schizophrenia, bipolar disorder, and autism spectrum disorder. These results advance our knowledge of the relationship between cortical function and striatal dopamine, with relevance for understanding pathophysiology and treatment of diseases in which simultaneous aberrations of these systems exist

    Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability

    Get PDF
    Primary objective: The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. Design and Methods: Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert–Huang method in the spectral range 0.02–0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. Results: Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. Conclusions: HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality

    Sudden cardiac death in childhood RASopathy-associated hypertrophic cardiomyopathy: Validation of the HCM risk-kids model and predictors of events

    Get PDF
    Background: RASopathies account for nearly 20% of cases of childhood hypertrophic cardiomyopathy (HCM). Sudden cardiac death (SCD) occurs in patients with RASopathy-associated HCM, but the risk factors for SCD have not been systematically evaluated. Aim: To validate the HCM Risk-Kids SCD risk prediction model in children with RASopathy-associated HCM and investigate potential specific SCD predictors in this population. Methods: Validation of HCM Risk-Kids was performed in a retrospective cohort of 169 patients with a RASopathy-associated HCM from 15 international paediatric cardiology centres. Multiple imputation by chained equations was used for missing values related to the HCM Risk-Kids parameters. Results: Eleven patients (6.5%) experienced a SCD or equivalent event at a median age of 12.5 months (IQR 7.7–28.64). The calculated SCD/equivalent event incidence was 0.78 (95% CI 0.43–1.41) per 100 patient years. Six patients (54.54%) with an event were in the low-risk category according to the HCM Risk-Kids model. Harrell's C index was 0.60, with a sensitivity of 9.09%, specificity of 63.92%, positive predictive value of 1.72%, and negative predictive value of 91%; with a poor distinction between the different risk groups. Unexplained syncope (HR 42.17, 95% CI 10.49–169.56, p < 0.001) and non-sustained ventricular tachycardia (HR 5.48, 95% CI 1.58–19.03, p < 0.007) were predictors of SCD on univariate analysis. Conclusion: Unexplained syncope and the presence of NSVT emerge as predictors for SCD in children with RASopathy-associated HCM. The HCM Risk-Kids model may not be appropriate to use in this population, but larger multicentre collaborative studies are required to investigate this further

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans

    Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Get PDF
    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The HÎČ and He ii λ4686 broad emission-line light curves lag that of the 5100 +-optical continuum by 4.17+0.36-0.36 and 0.79+0.35-0.34 days, respectively. The HÎČ lag relative to the 1158 ultraviolet continuum light curve measured by the Hubble Space Telescope is ∌50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ∌50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for HÎČ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the HÎČ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He ii(+O iii]), and Si iv(+O iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured HÎČ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548

    Responsibility for managing musculoskeletal disorders – A cross-sectional postal survey of attitudes

    Get PDF
    Background: Musculoskeletal disorders are a major burden on individuals, health systems and social care systems and rehabilitation efforts in these disorders are considerable. Self-care is often considered a cost effective treatment alternative owing to limited health care resources. But what are the expectations and attitudes in this question in the general population? The purpose of this study was to describe general attitudes to responsibility for the management of musculoskeletal disorders and to explore associations between attitudes and background variables. Methods: A cross-sectional, postal questionnaire survey was carried out with a random sample of a general adult Swedish population of 1770 persons. Sixty-one percent (n = 1082) responded to the questionnaire and was included for the description of general attitudes towards responsibility for the management of musculoskeletal disorders. For the further analyses of associations to background variables 683–693 individuals could be included. Attitudes were measured by the &quot;Attitudes regarding Responsibility for Musculoskeletal disorders&quot; (ARM) instrument, where responsibility is attributed on four dimensions; to myself, as being out of my hands, to employers or to (medical) professionals. Multiple logistic regression was used to explore associations between attitudes to musculoskeletal disorders and the background variables age, sex, education, physical activity, presence of musculoskeletal disorders, sick leave and whether the person had visited a care provider. Results: A majority of participants had internal views, i.e. showed an attitude of taking personal responsibility for musculoskeletal disorders, and did not place responsibility for the management out of their own hands or to employers. However, attributing shared responsibility between self and medical professionals was also found.The main associations found between attitude towards responsibility for musculoskeletal disorders and investigated background variables were that physical inactivity (OR 2.92–9.20), musculoskeletal disorder related sick leave (OR 2.31–3.07) and no education beyond the compulsory level (OR 3.12–4.76) increased the odds of attributing responsibility externally, i.e placing responsibility on someone or something else.Conclusion: Respondents in this study mainly saw themselves as responsible for managing musculoskeletal disorders. The associated background variables refined this finding and one conclusion is that, to optimise outcome when planning the prevention, treatment and management of these disorders, people&apos;s attitudes should be taken into account

    Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models

    Get PDF
    The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as ‘Risk factors for schizophrenia—all roads lead to dopamine' or ‘The dopamine hypothesis of schizophrenia—the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
    • 

    corecore