3,407 research outputs found
The Beneficial Effects of Thin Film Stress in the Fabrication of a MEMS Device
Microelectromechanical systems (MEMS) are playing an increasing role in the semiconductor industry today. The modeling and manufacturing of mechanical devices on a microscopic level have made their way from the area of singularly fabricated devices for research into the bulk processing of the commercial market Many of these commercial devices are of the optical variety. And there has also been successful work done in combining integrated circuits with MEMS. Presented here is a process for the fabrication of an optical device called a microshutter. The device consists of a moveable electrode constructed of a stack of Si02/Al/SiO2. The key to the successful micromachining of this device lays in the stress characteristics of the stacked layer. The physical qualities and methods of obtaining these stresses will also be discussed
Symmetry improvement of 3PI effective actions for O(N) scalar field theory
[Abridged] n-Particle Irreducible Effective Actions (PIEA) are a powerful
tool for extracting non-perturbative and non-equilibrium physics from quantum
field theories. Unfortunately, practical truncations of PIEA can
unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by
introducing a "symmetry improvement" scheme in the context of the 2PIEA for an
O(2) scalar theory, ensuring that the Goldstone boson is massless in the broken
symmetry phase [A. Pilaftsis and D. Teresi, Nuc.Phys. B 874, 2 (2013), pp.
594--619]. We extend this by introducing a symmetry improved 3PIEA for O(N)
theories, for which the basic variables are the 1-, 2- and 3-point correlation
functions. This requires the imposition of a Ward identity involving the
3-point function. The method leads to an infinity of physically distinct
schemes, though an analogue of d'Alembert's principle is used to single out a
unique scheme. The standard equivalence hierarchy of PIEA no longer holds
with symmetry improvement and we investigate the difference between the
symmetry improved 3PIEA and 2PIEA. We present renormalized equations of motion
and counter-terms for 2 and 3 loop truncations of the effective action, leaving
their numerical solution to future work. We solve the Hartree-Fock
approximation and find that our method achieves a middle ground between the
unimproved 2PIEA and PT methods. The phase transition predicted by our method
is weakly first order and the Goldstone theorem is satisfied. We also show
that, in contrast to PT, the symmetry improved 3PIEA at 2 loops does not
predict the correct Higgs decay rate, but does at 3 loops. These results
suggest that symmetry improvement should not be applied to PIEA truncated to
loops. We also show that symmetry improvement is compatible with the
Coleman-Mermin-Wagner theorem, a check on the consistency of the formalism.Comment: 27 pages, 15 figures, 2 supplemental Mathematica notebooks. REVTeX
4.1 with amsmath. Updated with minor corrections. Accepted for publication in
Phys. Rev.
Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality
Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate
Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality
Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate
Susceptibility of North American Ducks and Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses
Species-related differences in clinical response and duration and extent of viral shedding exist between North American ducks and gulls infected with H5N1 HPAI viruses
Subtype diversity and reassortment potential for co‐circulating avian influenza viruses at a diversity hot spot
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106946/1/jane12167.pd
Титульные страницы и содержание
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses
Robust Ramsey sequences with Raman adiabatic rapid passage
We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in [superscript 133]Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1/e[superscript 2] intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ~3.5 × 10[superscript −12] after about 2500 s of averaging.Charles Stark Draper Laboratory (Fellowship Program)Charles Stark Draper Laborator
- …