11,970 research outputs found

    Advances in Measurement of Skin Friction in Airflow

    Get PDF
    The surface interferometric skin-friction (SISF) measurement system is an instrument for determining the distribution of surface shear stress (skin friction) on a wind-tunnel model. The SISF system utilizes the established oil-film interference method, along with advanced image-data-processing techniques and mathematical models that express the relationship between interferograms and skin friction, to determine the distribution of skin friction over an observed region of the surface of a model during a single wind-tunnel test. In the oil-film interference method, a wind-tunnel model is coated with a thin film of oil of known viscosity and is illuminated with quasi-monochromatic, collimated light, typically from a mercury lamp. The light reflected from the outer surface of the oil film interferes with the light reflected from the oil-covered surface of the model. In the present version of the oil-film interference method, a camera captures an image of the illuminated model and the image in the camera is modulated by the interference pattern. The interference pattern depends on the oil-thickness distribution on the observed surface, and this distribution can be extracted through analysis of the image acquired by the camera. The oil-film technique is augmented by a tracer technique for observing the streamline pattern. To make the streamlines visible, small dots of fluorescentchalk/oil mixture are placed on the model just before a test. During the test, the chalk particles are embedded in the oil flow and produce chalk streaks that mark the streamlines. The instantaneous rate of thinning of the oil film at a given position on the surface of the model can be expressed as a function of the instantaneous thickness, the skin-friction distribution on the surface, and the streamline pattern on the surface; the functional relationship is expressed by a mathematical model that is nonlinear in the oil-film thickness and is known simply as the thin-oil-film equation. From the image data acquired as described, the time-dependent oil-thickness distribution and streamline pattern are extracted and by inversion of the thin-oil-film equation it is then possible to determine the skin-friction distribution. In addition to a quasi-monochromatic light source, the SISF system includes a beam splitter and two video cameras equipped with filters for observing the same area on a model in different wavelength ranges, plus a frame grabber and a computer for digitizing the video images and processing the image data. One video camera acquires the interference pattern in a narrow wavelength range of the quasi-monochromatic source. The other video camera acquires the streamline image of fluorescence from the chalk in a nearby but wider wavelength range. The interference- pattern and fluorescence images are digitized, and the resulting data are processed by an algorithm that inverts the thin-oil-film equation to find the skin-friction distribution

    The Thin Oil Film Equation

    Get PDF
    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation

    A TPD and RAIRS comparison of the low temperature behavior of benzene, toluene, and xylene on graphite

    Get PDF
    The first comparative study of the surface behavior of four small aromatic molecules, benzene, toluene, p-xylene, and o-xylene, adsorbed on graphite at temperatures ≤30 K, is presented. Intermolecular interactions are shown to be important in determining the growth of the molecules on the graphite surface at low (monolayer) exposures. Repulsive intermolecular interactions dominate the behavior of benzene and toluene. By contrast, stronger interactions with the graphite surface are observed for the xylene isomers, with islanding observed for o-xylene. Multilayer desorption temperatures and energies increase with the size of the molecule, ranging from 45.5 to 59.5 kJ mol−1 for benzene and p-xylene, respectively. Reflection absorption infrared spectroscopy gives insight into the effects of thermal processing on the ordering of the molecules. Multilayer benzene, p-xylene, and o-xylene form crystalline structures following annealing of the ice. However, we do not observe an ordered structure for toluene in this study. The ordering of p-xylene shows a complex relationship dependent on both the annealing temperature and exposure

    Long-term survival after traumatic brain injury: a population-based analysis controlled for nonhead trauma

    Get PDF
    OBJECTIVE: To examine the contribution of co-occurring nonhead injuries to hazard of death after traumatic brain injury (TBI). PARTICIPANTS: A random sample of Olmsted County, Minnesota, residents with confirmed TBI from 1987 through 1999 was identified. DESIGN: Each case was assigned an age- and sex-matched, non-TBI "regular control" from the population. For "special cases" with accompanying nonhead injuries, 2 matched "special controls" with nonhead injuries of similar severity were assigned. MEASURES: Vital status was followed from baseline (ie, injury date for cases, comparable dates for controls) through 2008. Cases were compared first with regular controls and second with regular or special controls, depending on case type. RESULTS: In total, 1257 cases were identified (including 221 special cases). For both cases versus regular controls and cases versus regular or special controls, the hazard ratio was increased from baseline to 6 months (10.82 [2.86-40.89] and 7.13 [3.10-16.39], respectively) and from baseline through study end (2.92 [1.74-4.91] and 1.48 [1.09-2.02], respectively). Among 6-month survivors, the hazard ratio was increased for cases versus regular controls (1.43 [1.06-2.15]) but not for cases versus regular or special controls (1.05 [0.80-1.38]). CONCLUSIONS: Among 6-month survivors, accounting for nonhead injuries resulted in a nonsignificant effect of TBI on long-term mortality
    corecore