1,859 research outputs found
The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba
Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3
Spectral Statistics of the Two-Body Random Ensemble Revisited
Using longer spectra we re-analyze spectral properties of the two-body random
ensemble studied thirty years ago. At the center of the spectra the old results
are largely confirmed, and we show that the non-ergodicity is essentially due
to the variance of the lowest moments of the spectra. The longer spectra allow
to test and reach the limits of validity of French's correction for the number
variance. At the edge of the spectra we discuss the problems of unfolding in
more detail. With a Gaussian unfolding of each spectrum the nearest neighbour
spacing distribution between ground state and first exited state is shown to be
stable. Using such an unfolding the distribution tends toward a semi-Poisson
distribution for longer spectra. For comparison with the nuclear table ensemble
we could use such unfolding obtaining similar results as in the early papers,
but an ensemble with realistic splitting gives reasonable results if we just
normalize the spacings in accordance with the procedure used for the data.Comment: 11 pages, 7 figure
Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere
A method for the full three-dimensional (3-D) reconstruction of the
trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations
Observatory (STEREO) data is presented. Four CMEs that were simultaneously
observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and
Behind STEREO satellites were analysed. These observations were used to derive
CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data
support a radial propagation model. Assuming pseudo-radial propagation at large
distances from the Sun (15-240Rsun), the CME positions were extrapolated into
the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in
the different fields-of-view. It was found that CMEs slower than the solar wind
were accelerated, while CMEs faster than the solar wind were decelerated, with
both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi
Motion of Inertial Observers Through Negative Energy
Recent research has indicated that negative energy fluxes due to quantum
coherence effects obey uncertainty principle-type inequalities of the form
|\Delta E|\,{\Delta \tau} \lprox 1\,. Here is the magnitude of
the negative energy which is transmitted on a timescale . Our main
focus in this paper is on negative energy fluxes which are produced by the
motion of observers through static negative energy regions. We find that
although a quantum inequality appears to be satisfied for radially moving
geodesic observers in two and four-dimensional black hole spacetimes, an
observer orbiting close to a black hole will see a constant negative energy
flux. In addition, we show that inertial observers moving slowly through the
Casimir vacuum can achieve arbitrarily large violations of the inequality. It
seems likely that, in general, these types of negative energy fluxes are not
constrained by inequalities on the magnitude and duration of the flux. We
construct a model of a non-gravitational stress-energy detector, which is
rapidly switched on and off, and discuss the strengths and weaknesses of such a
detector.Comment: 18pp + 1 figure(not included, available on request), in LATEX,
TUPT-93-
Averaged Energy Conditions and Quantum Inequalities
Connections are uncovered between the averaged weak (AWEC) and averaged null
(ANEC) energy conditions, and quantum inequality restrictions on negative
energy for free massless scalar fields. In a two-dimensional compactified
Minkowski universe, we derive a covariant quantum inequality-type bound on the
difference of the expectation values of the energy density in an arbitrary
quantum state and in the Casimir vacuum state. From this bound, it is shown
that the difference of expectation values also obeys AWEC and ANEC-type
integral conditions. In contrast, it is well-known that the stress tensor in
the Casimir vacuum state alone satisfies neither quantum inequalities nor
averaged energy conditions. Such difference inequalities represent limits on
the degree of energy condition violation that is allowed over and above any
violation due to negative energy densities in a background vacuum state. In our
simple two-dimensional model, they provide physically interesting examples of
new constraints on negative energy which hold even when the usual AWEC, ANEC,
and quantum inequality restrictions fail. In the limit when the size of the
space is allowed to go to infinity, we derive quantum inequalities for timelike
and null geodesics which, in appropriate limits, reduce to AWEC and ANEC in
ordinary two-dimensional Minkowski spacetime. We also derive a quantum
inequality bound on the energy density seen by an inertial observer in
four-dimensional Minkowski spacetime. The bound implies that any inertial
observer in flat spacetime cannot see an arbitrarily large negative energy
density which lasts for an arbitrarily long period of time.Comment: 20pp, plain LATEX, TUTP-94-1
Efficacy of language intervention in the early years
Background: Oral language skills in the preschool and early school years are critical to educational
success and provide the foundations for the later development of reading comprehension.
Methods: In
a randomized controlled trial, 180 children from 15 UK nursery schools (n = 12 from each setting;
Mage = 4;0) were randomly allocated to receive a 30-week oral language intervention or to a waiting
control group. Children in the intervention group received 30 weeks of oral language intervention,
beginning in nursery (preschool), in three group sessions per week, continuing with daily sessions on
transition to Reception class (pre-Year 1). The intervention was delivered by nursery staff and teaching
assistants trained and supported by the research team. Following screening, children were assessed
preintervention, following completion of the intervention and after a 6-month delay.
Results: Children
in the intervention group showed significantly better performance on measures of oral language and
spoken narrative skills than children in the waiting control group immediately after the 30 week
intervention and after a 6 month delay. Gains in word-level literacy skills were weaker, though clear
improvements were observed on measures of phonological awareness. Importantly, improvements in
oral language skills generalized to a standardized measure of reading comprehension at maintenance
test.
Conclusions: Early intervention for children with oral language difficulties is effective and can
successfully support the skills, which underpin reading comprehensio
A molecular dynamics simulation of polymer crystallization from oriented amorphous state
Molecular process of crystallization from an oriented amorphous state was
reproduced by molecular dynamics simulation for a realistic polyethylene model.
Initial oriented amorphous state was obtained by uniaxial drawing an isotropic
glassy state at 100 K. By the temperature jump from 100 K to 330 K, there
occurred the crystallization into the fiber structure, during the process of
which we observed the developments of various order parameters. The real space
image and its Fourier transform revealed that a hexagonally ordered domain was
initially formed, and then highly ordered crystalline state with stacked
lamellae developed after further adjustment of the relative heights of the
chains along their axes.Comment: 4 pages, 3 figure
Shadowing in photo-production : role of in-medium hadrons
We study the effects of in-medium hadronic properties on shadowing in
photon-nucleus interactions in Glauber model as well as in the multiple
scattering approach. A reasonable agreement with the experimental data is
obtained in a scenario of downward spectral shift of the hadrons. Shadowing is
found to be insensitive to the broadening of the spectral functions. An impact
parameter dependent analysis of shadowing might shed more light on the role of
in-medium properties of hadrons.Comment: Title modified; version to appear in PRC, Rapid Communication
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
Weak Localization Effect in Superconductors by Radiation Damage
Large reductions of the superconducting transition temperature and
the accompanying loss of the thermal electrical resistivity (electron-phonon
interaction) due to radiation damage have been observed for several A15
compounds, Chevrel phase and Ternary superconductors, and in
the high fluence regime. We examine these behaviors based on the recent theory
of weak localization effect in superconductors. We find a good fitting to the
experimental data. In particular, weak localization correction to the
phonon-mediated interaction is derived from the density correlation function.
It is shown that weak localization has a strong influence on both the
phonon-mediated interaction and the electron-phonon interaction, which leads to
the universal correlation of and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information,
Plesse see http://www.fen.bilkent.edu.tr/~yjki
- …