144 research outputs found

    Specimens at the Center: An Informatics Workflow and Toolkit for Specimen-level analysis of Public DNA database data

    Get PDF
    Major public DNA databases — NCBI GenBank, the DNA DataBank of Japan (DDBJ), and the European Molecular Biology Laboratory (EMBL) — are invaluable biodiversity libraries. Systematists and other biodiversity scientists commonly mine these databases for sequence data to use in phylogenetic studies, but such studies generally use only the taxonomic identity of the sequenced tissue, not the specimen identity. Thus studies that use DNA supermatrices to construct phylogenetic trees with species at the tips typically do not take advantage of the fact that for many individuals in the public DNA databases, several DNA regions have been sampled; and for many species, two or more individuals have been sampled. Thus these studies typically do not make full use of the multigene datasets in public DNA databases to test species coherence and select optimal sequences to represent a species. In this study, we introduce a set of tools developed in the R programming language to construct individual-based trees from NCBI GenBank data and present a set of trees for the genus Carex (Cyperaceae) constructed using these methods. For the more than 770 species for which we found sequence data, our approach recovered an average of 1.85 gene regions per specimen, up to seven for some specimens, and more than 450 species represented by two or more specimens. Depending on the subset of genes analyzed, we found up to 42% of species monophyletic. We introduce a simple tree statistic—the Taxonomic Disparity Index (TDI)—to assist in curating specimen-level datasets and provide code for selecting maximally informative (or, conversely, minimally misleading) sequences as species exemplars. While tailored to the Carex dataset, the approach and code presented in this paper can readily be generalized to constructing individual-level trees from large amounts of data for any species group

    White-Tailed Deer are a Biotic Filter During Community Assembly, Reducing Species and Phylogenetic Diversity

    Get PDF
    Community assembly entails a filtering process, where species found in a local community are those that can pass through environmental (abiotic) and biotic filters and successfully compete. Previous research has demonstrated the ability of white-tailed deer (Odocoileus virginianus) to reduce species diversity and favour browse-tolerant plant communities. In this study, we expand on our previous work by investigating deer as a possible biotic filter altering local plant community assembly. We used replicated 23-year-old deer exclosures to experimentally assess the effects of deer on species diversity (H′), richness (SR), phylogenetic community structure and phylogenetic diversity in paired browsed (control) and unbrowsed (exclosed) plots. Additionally, we developed a deer-browsing susceptibility index (DBSI) to assess the vulnerability of local species to deer. Deer browsing caused a 12 % reduction in H′ and 17 % reduction in SR, consistent with previous studies. Furthermore, browsing reduced phylogenetic diversity by 63 %, causing significant phylogenetic clustering. Overall, graminoids were the least vulnerable to deer browsing based on DBSI calculations. These findings demonstrate that deer are a significant driver of plant community assembly due to their role as a selective browser, or more generally, as a biotic filter. This study highlights the importance of knowledge about the plant tree of life in assessing the effects of biotic filters on plant communities. Application of such knowledge has considerable potential to advance our understanding of plant community assembly

    Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction

    Get PDF
    Diabetes, obesity and Alzheimer’s disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), APP and β-amyloid (Aβ) are linked with vascular disease development and raised BACE1 and Aβ accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, raised Aβ and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice raised plasma and vascular Aβ42 that correlated with decreased NO bioavailability, endothelial dysfunction and raised blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aβ42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aβ42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation and raised blood pressure. In humans, raised plasma Aβ42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aβ42 reduced endothelial NO synthase (eNOS), cyclic GMP and protein kinase G (PKG) activity independently of diet whereas endothelin-1 was increased by diet and Aβ42. Lowering Aβ42 reversed the DIO deficit in the eNOS-cGMP-PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes

    Cassini VIMS observations of H3+ emission on the nightside of Jupiter

    Get PDF
    We present the first detailed analysis of H3+ nightside emission from Jupiter, using Visual and Infrared Mapping Spectrometer (VIMS) data from the Cassini flyby in 2000–2001, producing the first Jovian maps of nightside H3+ emission, temperature, and column density. Using these, we identify and characterize regions of H3+ nightside emission, compared against past observations of H3+ emission on the dayside. We focus our investigation on the region previously described as “mid-to-low latitude emission,” the source for which has been controversial. We find that the brightest of this emission is generated at Jovigraphic latitudes similar to the most equatorward extent of the main auroral emission but concentrated at longitudes eastward of this emission. The emission is produced by enhanced H3+ density, with temperatures dropping away in this region. This emission has a loose association with the predicted location of diffuse aurora produced by pitch angle scattering in the north, but not in the south. This emission also lays in the path of subrotating winds flowing from the aurora, suggesting a transport origin. Some differences are seen between dayside and nightside subauroral emissions, with dayside emission extending more equatorward, perhaps caused by the lack of sunlight ionization on the nightside, and unmeasured changes in temperature. Ionospheric temperatures are hotter in the polar region (~1100–1500 K), dropping away toward the equator (as low as 750 K), broadly similar to values on the dayside, highlighting the dominance of auroral effects in the polar region. No equatorial emission is observed, suggesting that very little particle precipitation occurs away from the polar regions

    Effects of infection-induced migration delays on the epidemiology of avian influenza in wild mallard populations

    Get PDF
    Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.<br /

    Orbital Identification of Carbonate-Bearing Rocks on Mars

    Get PDF
    Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments

    Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids

    Get PDF
    Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs
    corecore